Are curly brackets used in Lua? - syntax

If curly brackets ('{' and '}') are used in Lua, what are they used for?

Table literals.
The table is the central type in Lua, and can be treated as either an associative array (hash table or dictionary) or as an ordinary array. The keys can be values of any Lua type except nil, and the elements of a table can hold any value except nil.
Array member access is made more efficient than hash key access behind the scenes, but the details don't usually matter. That actually makes handling sparse arrays handy since storage only need be allocated for those cells that contain a value at all.
This does lead to a universal 1-based array idiom that feels a little strange to a C programmer.
For example
a = { 1, 2, 3 }
creates an array stored in the variable a with three elements that (coincidentally) have the same values as their indices. Because the elements are stored at sequential indices beginning with 1, the length of a (given by #a or table.getn(a)) is 3.
Initializing a table with non-integer keys can be done like this:
b = { one=1, pi=3.14, ["half pi"]=1.57, [function() return 17 end]=42 }
where b will have entries named "one", "pi", "half pi", and an anonymous function. Of course, looking up that last element without iterating the table might be tricky unless a copy of that very function is stored in some other variable.
Another place that curly braces appear is really the same semantic meaning, but it is concealed (for a new user of Lua) behind some syntactic sugar. It is common to write functions that take a single argument that should be a table. In that case, calling the function does not require use of parenthesis. This results in code that seems to contain a mix of () and {} both apparently used as a function call operator.
btn = iup.button{title="ok"}
is equivalent to
btn = iup.button({title="ok"})
but is also less hard on the eyes. Incidentally, calling a single-argument function with a literal value also works for string literals.

list/ditionary constructor (i.e. table type constructor).
They are not used for code blocks if that's what you mean. For that Lua just uses the end keyword to end the block.
See here

They're used for table literals as you would use in C :
t = {'a', 'b', 'c'}
That's the only common case. They're not used for block delimiters. In a lua table, you can put values of different types :
t={"foo", 'b', 3}
You can also use them as dictionnaries, à la Python :
t={name="foo", age=32}

Related

How to call Lua table value explicitly when using integer counter (i,j,k) in a for loop to make the table name/address?

I have to be honest that I don't quite understand Lua that well yet. I am trying to overwrite a local numeric value assigned to a set table address (is this the right term?).
The addresses are of the type:
project.models.stor1.inputs.T_in.default, project.models.stor2.inputs.T_in.default and so on with the stor number increasing.
I would like to do this in a for loop but cannot find the right expression to make the entire string be accepted by Lua as a table address (again, I hope this is the right term).
So far, I tried the following to concatenate the strings but without success in calling and then overwriting the value:
for k = 1,10,1 do
project.models.["stor"..k].inputs.T_in.default = 25
end
for k = 1,10,1 do
"project.models.stor"..j..".T_in.default" = 25
end
EDIT:
I think I found the solution as per https://www.lua.org/pil/2.5.html:
A common mistake for beginners is to confuse a.x with a[x]. The first form represents a["x"], that is, a table indexed by the string "x". The second form is a table indexed by the value of the variable x. See the difference:
for k = 1,10,1 do
project["models"]["stor"..k]["inputs"]["T_in"]["default"] = 25
end
You were almost close.
Lua supports this representation by providing a.name as syntactic sugar for a["name"].
Read more: https://www.lua.org/pil/2.5.html
You can use only one syntax in time.
Either tbl.key or tbl["key"].
The limitation of . is that you can only use constant strings in it (which are also valid variable names).
In square brackets [] you can evaluate runtime expressions.
Correct way to do it:
project.models["stor"..k].inputs.T_in.default = 25
The . in models.["stor"..k] is unnecessary and causes an error. The correct syntax is just models["stor"..k].

How to replace an object in Ruby?

Say I have some deeply nested array structure and a reference to an object inside:
strings = ["1", "2", " 3"]
nested = [[strings] * 10] * 10
reference = nested[0][0][0]
How do I replace the object reference points to with eg. "4"? I need somthing generic that works with arbitrary objects, not String#gsub! and friends. Something like Object#replace(other_obj).
You can't, we don't have (explicit) pointers in Ruby, we have (implicit) references but you can't dereference them to mess with what they contain. Instead, you need to do something like:
inner nested[0][0]
inner[0] = '4'
so that you can work with a reference to the element you want to replace rather than the element itself.
Of course, with the structure in your question, that inner[0] = '4' will replace the first element of strings (and thus every element of nested since it is just a pile of references to the same array that strings references.
Sorry about how overloaded the term reference is here. It is a horrible abuse of English but English itself is an abuse of English :)

Associatively sorting a table by value in Lua

I have a key => value table I'd like to sort in Lua. The keys are all integers, but aren't consecutive (and have meaning). Lua's only sort function appears to be table.sort, which treats tables as simple arrays, discarding the original keys and their association with particular items. Instead, I'd essentially like to be able to use PHP's asort() function.
What I have:
items = {
[1004] = "foo",
[1234] = "bar",
[3188] = "baz",
[7007] = "quux",
}
What I want after the sort operation:
items = {
[1234] = "bar",
[3188] = "baz",
[1004] = "foo",
[7007] = "quux",
}
Any ideas?
Edit: Based on answers, I'm going to assume that it's simply an odd quirk of the particular embedded Lua interpreter I'm working with, but in all of my tests, pairs() always returns table items in the order in which they were added to the table. (i.e. the two above declarations would iterate differently).
Unfortunately, because that isn't normal behavior, it looks like I can't get what I need; Lua doesn't have the necessary tools built-in (of course) and the embedded environment is too limited for me to work around it.
Still, thanks for your help, all!
You seem to misunderstand something. What you have here is a associative array. Associative arrays have no explicit order on them, e.g. it's only the internal representation (usually sorted) that orders them.
In short -- in Lua, both of the arrays you posted are the same.
What you would want instead, is such a representation:
items = {
{1004, "foo"},
{1234, "bar"},
{3188, "baz"},
{7007, "quux"},
}
While you can't get them by index now (they are indexed 1, 2, 3, 4, but you can create another index array), you can sort them using table.sort.
A sorting function would be then:
function compare(a,b)
return a[1] < b[1]
end
table.sort(items, compare)
As Komel said, you're dealing with associative arrays, which have no guaranteed ordering.
If you want key ordering based on its associated value while also preserving associative array functionality, you can do something like this:
function getKeysSortedByValue(tbl, sortFunction)
local keys = {}
for key in pairs(tbl) do
table.insert(keys, key)
end
table.sort(keys, function(a, b)
return sortFunction(tbl[a], tbl[b])
end)
return keys
end
items = {
[1004] = "foo",
[1234] = "bar",
[3188] = "baz",
[7007] = "quux",
}
local sortedKeys = getKeysSortedByValue(items, function(a, b) return a < b end)
sortedKeys is {1234,3188,1004,7007}, and you can access your data like so:
for _, key in ipairs(sortedKeys) do
print(key, items[key])
end
result:
1234 bar
3188 baz
1004 foo
7007 quux
hmm, missed the part about not being able to control the iteration. there
But in lua there is usually always a way.
http://lua-users.org/wiki/OrderedAssociativeTable
Thats a start. Now you would need to replace the pairs() that the library uses. That could be a simples as pairs=my_pairs. You could then use the solution in the link above
PHP arrays are different from Lua tables.
A PHP array may have an ordered list of key-value pairs.
A Lua table always contains an unordered set of key-value pairs.
A Lua table acts as an array when a programmer chooses to use integers 1, 2, 3, ... as keys. The language syntax and standard library functions, like table.sort offer special support for tables with consecutive-integer keys.
So, if you want to emulate a PHP array, you'll have to represent it using list of key-value pairs, which is really a table of tables, but it's more helpful to think of it as a list of key-value pairs. Pass a custom "less-than" function to table.sort and you'll be all set.
N.B. Lua allows you to mix consecutive-integer keys with any other kinds of keys in the same table—and the representation is efficient. I use this feature sometimes, usually to tag an array with a few pieces of metadata.
Coming to this a few months later, with the same query. The recommended answer seemed to pinpoint the gap between what was required and how this looks in LUA, but it didn't get me what I was after exactly :- which was a Hash sorted by Key.
The first three functions on this page DID however : http://lua-users.org/wiki/SortedIteration
I did a brief bit of Lua coding a couple of years ago but I'm no longer fluent in it.
When faced with a similar problem, I copied my array to another array with keys and values reversed, then used sort on the new array.
I wasn't aware of a possibility to sort the array using the method Kornel Kisielewicz recommends.
The proposed compare function works but only if the values in the first column are unique.
Here is a bit enhanced compare function to ensure, if the values of a actual column equals, it takes values from next column to evaluate...
With {1234, "baam"} < {1234, "bar"} to be true the items the array containing "baam" will be inserted before the array containing the "bar".
local items = {
{1004, "foo"},
{1234, "bar"},
{1234, "baam"},
{3188, "baz"},
{7007, "quux"},
}
local function compare(a, b)
for inx = 1, #a do
-- print("A " .. inx .. " " .. a[inx])
-- print("B " .. inx .. " " .. b[inx])
if a[inx] == b[inx] and a[inx + 1] < b[inx + 1] then
return true
elseif a[inx] ~= b[inx] and a[inx] < b[inx] == true then
return true
else
return false
end
end
return false
end
table.sort(items,compare)

Can't sort table with associative indexes

Why I can't use table.sort to sort tables with associative indexes?
In general, Lua tables are pure associative arrays. There is no "natural" order other than the as a side effect of the particular hash table implementation used in the Lua core. This makes sense because values of any Lua data type (other than nil) can be used as both keys and values; but only strings and numbers have any kind of sensible ordering, and then only between values of like type.
For example, what should the sorted order of this table be:
unsortable = {
answer=42,
true="Beauty",
[function() return 17 end] = function() return 42 end,
[math.pi] = "pi",
[ {} ] = {},
12, 11, 10, 9, 8
}
It has one string key, one boolean key, one function key, one non-integral key, one table key, and five integer keys. Should the function sort ahead of the string? How do you compare the string to a number? Where should the table sort? And what about userdata and thread values which don't happen to appear in this table?
By convention, values indexed by sequential integers beginning with 1 are commonly used as lists. Several functions and common idioms follow this convention, and table.sort is one example. Functions that operate over lists usually ignore any values stored at keys that are not part of the list. Again, table.sort is an example: it sorts only those elements that are stored at keys that are part of the list.
Another example is the # operator. For the above table, #unsortable is 5 because unsortable[5] ~= nil and unsortable[6] == nil. Notice that the value stored at the numeric index math.pi is not counted even though pi is between 3 and 4 because it is not an integer. Furthermore, none of the other non-integer keys are counted either. This means that a simple for loop can iterate over the entire list:
for i in 1,#unsortable do
print(i,unsortable[i])
end
Although that is often written as
for i,v in ipairs(unsortable) do
print(i,v)
end
In short, Lua tables are unordered collections of values, each indexed by a key; but there is a special convention for sequential integer keys beginning at 1.
Edit: For the special case of non-integral keys with a suitable partial ordering, there is a work-around involving a separate index table. The described content of tables keyed by string values is a suitable example for this trick.
First, collect the keys in a new table, in the form of a list. That is, make a table indexed by consecutive integers beginning at 1 with keys as values and sort that. Then, use that index to iterate over the original table in the desired order.
For example, here is foreachinorder(), which uses this technique to iterate over all values of a table, calling a function for each key/value pair, in an order determined by a comparison function.
function foreachinorder(t, f, cmp)
-- first extract a list of the keys from t
local keys = {}
for k,_ in pairs(t) do
keys[#keys+1] = k
end
-- sort the keys according to the function cmp. If cmp
-- is omitted, table.sort() defaults to the < operator
table.sort(keys,cmp)
-- finally, loop over the keys in sorted order, and operate
-- on elements of t
for _,k in ipairs(keys) do
f(k,t[k])
end
end
It constructs an index, sorts it with table.sort(), then loops over each element in the sorted index and calls the function f for each one. The function f is passed the key and value. The sort order is determined by an optional comparison function which is passed to table.sort. It is called with two elements to compare (the keys to the table t in this case) and must return true if the first is less than the second. If omitted, table.sort uses the built-in < operator.
For example, given the following table:
t1 = {
a = 1,
b = 2,
c = 3,
}
then foreachinorder(t1,print) prints:
a 1
b 2
c 3
and foreachinorder(t1,print,function(a,b) return a>b end) prints:
c 3
b 2
a 1
You can only sort tables with consecutive integer keys starting at 1, i.e., lists. If you have another table of key-value pairs, you can make a list of pairs and sort that:
function sortpairs(t, lt)
local u = { }
for k, v in pairs(t) do table.insert(u, { key = k, value = v }) end
table.sort(u, lt)
return u
end
Of course this is useful only if you provide a custom ordering (lt) which expects as arguments key/value pairs.
This issue is discussed at greater length in a related question about sorting Lua tables.
Because they don't have any order in the first place. It's like trying to sort a garbage bag full of bananas.

What are the precise rules for when you can omit parenthesis, dots, braces, = (functions), etc.?

What are the precise rules for when you can omit (omit) parentheses, dots, braces, = (functions), etc.?
For example,
(service.findAllPresentations.get.first.votes.size) must be equalTo(2).
service is my object
def findAllPresentations: Option[List[Presentation]]
votes returns List[Vote]
must and be are both functions of specs
Why can't I go:
(service findAllPresentations get first votes size) must be equalTo(2)
?
The compiler error is:
"RestServicesSpecTest.this.service.findAllPresentations
of type
Option[List[com.sharca.Presentation]]
does not take parameters"
Why does it think I'm trying to pass in a parameter? Why must I use dots for every method call?
Why must (service.findAllPresentations get first votes size) be equalTo(2) result in:
"not found: value first"
Yet, the "must be equalTo 2" of
(service.findAllPresentations.get.first.votes.size) must be equalTo 2, that is, method chaining works fine? - object chain chain chain param.
I've looked through the Scala book and website and can't really find a comprehensive explanation.
Is it in fact, as Rob H explains in Stack Overflow question Which characters can I omit in Scala?, that the only valid use-case for omitting the '.' is for "operand operator operand" style operations, and not for method chaining?
You seem to have stumbled upon the answer. Anyway, I'll try to make it clear.
You can omit dot when using the prefix, infix and postfix notations -- the so called operator notation. While using the operator notation, and only then, you can omit the parenthesis if there is less than two parameters passed to the method.
Now, the operator notation is a notation for method-call, which means it can't be used in the absence of the object which is being called.
I'll briefly detail the notations.
Prefix:
Only ~, !, + and - can be used in prefix notation. This is the notation you are using when you write !flag or val liability = -debt.
Infix:
That's the notation where the method appears between an object and it's parameters. The arithmetic operators all fit here.
Postfix (also suffix):
That notation is used when the method follows an object and receives no parameters. For example, you can write list tail, and that's postfix notation.
You can chain infix notation calls without problem, as long as no method is curried. For example, I like to use the following style:
(list
filter (...)
map (...)
mkString ", "
)
That's the same thing as:
list filter (...) map (...) mkString ", "
Now, why am I using parenthesis here, if filter and map take a single parameter? It's because I'm passing anonymous functions to them. I can't mix anonymous functions definitions with infix style because I need a boundary for the end of my anonymous function. Also, the parameter definition of the anonymous function might be interpreted as the last parameter to the infix method.
You can use infix with multiple parameters:
string substring (start, end) map (_ toInt) mkString ("<", ", ", ">")
Curried functions are hard to use with infix notation. The folding functions are a clear example of that:
(0 /: list) ((cnt, string) => cnt + string.size)
(list foldLeft 0) ((cnt, string) => cnt + string.size)
You need to use parenthesis outside the infix call. I'm not sure the exact rules at play here.
Now, let's talk about postfix. Postfix can be hard to use, because it can never be used anywhere except the end of an expression. For example, you can't do the following:
list tail map (...)
Because tail does not appear at the end of the expression. You can't do this either:
list tail length
You could use infix notation by using parenthesis to mark end of expressions:
(list tail) map (...)
(list tail) length
Note that postfix notation is discouraged because it may be unsafe.
I hope this has cleared all the doubts. If not, just drop a comment and I'll see what I can do to improve it.
Class definitions:
val or var can be omitted from class parameters which will make the parameter private.
Adding var or val will cause it to be public (that is, method accessors and mutators are generated).
{} can be omitted if the class has no body, that is,
class EmptyClass
Class instantiation:
Generic parameters can be omitted if they can be inferred by the compiler. However note, if your types don't match, then the type parameter is always infered so that it matches. So without specifying the type, you may not get what you expect - that is, given
class D[T](val x:T, val y:T);
This will give you a type error (Int found, expected String)
var zz = new D[String]("Hi1", 1) // type error
Whereas this works fine:
var z = new D("Hi1", 1)
== D{def x: Any; def y: Any}
Because the type parameter, T, is inferred as the least common supertype of the two - Any.
Function definitions:
= can be dropped if the function returns Unit (nothing).
{} for the function body can be dropped if the function is a single statement, but only if the statement returns a value (you need the = sign), that is,
def returnAString = "Hi!"
but this doesn't work:
def returnAString "Hi!" // Compile error - '=' expected but string literal found."
The return type of the function can be omitted if it can be inferred (a recursive method must have its return type specified).
() can be dropped if the function doesn't take any arguments, that is,
def endOfString {
return "myDog".substring(2,1)
}
which by convention is reserved for methods which have no side effects - more on that later.
() isn't actually dropped per se when defining a pass by name paramenter, but it is actually a quite semantically different notation, that is,
def myOp(passByNameString: => String)
Says myOp takes a pass-by-name parameter, which results in a String (that is, it can be a code block which returns a string) as opposed to function parameters,
def myOp(functionParam: () => String)
which says myOp takes a function which has zero parameters and returns a String.
(Mind you, pass-by-name parameters get compiled into functions; it just makes the syntax nicer.)
() can be dropped in the function parameter definition if the function only takes one argument, for example:
def myOp2(passByNameString:(Int) => String) { .. } // - You can drop the ()
def myOp2(passByNameString:Int => String) { .. }
But if it takes more than one argument, you must include the ():
def myOp2(passByNameString:(Int, String) => String) { .. }
Statements:
. can be dropped to use operator notation, which can only be used for infix operators (operators of methods that take arguments). See Daniel's answer for more information.
. can also be dropped for postfix functions
list tail
() can be dropped for postfix operators
list.tail
() cannot be used with methods defined as:
def aMethod = "hi!" // Missing () on method definition
aMethod // Works
aMethod() // Compile error when calling method
Because this notation is reserved by convention for methods that have no side effects, like List#tail (that is, the invocation of a function with no side effects means that the function has no observable effect, except for its return value).
() can be dropped for operator notation when passing in a single argument
() may be required to use postfix operators which aren't at the end of a statement
() may be required to designate nested statements, ends of anonymous functions or for operators which take more than one parameter
When calling a function which takes a function, you cannot omit the () from the inner function definition, for example:
def myOp3(paramFunc0:() => String) {
println(paramFunc0)
}
myOp3(() => "myop3") // Works
myOp3(=> "myop3") // Doesn't work
When calling a function that takes a by-name parameter, you cannot specify the argument as a parameter-less anonymous function. For example, given:
def myOp2(passByNameString:Int => String) {
println(passByNameString)
}
You must call it as:
myOp("myop3")
or
myOp({
val source = sourceProvider.source
val p = myObject.findNameFromSource(source)
p
})
but not:
myOp(() => "myop3") // Doesn't work
IMO, overuse of dropping return types can be harmful for code to be re-used. Just look at specification for a good example of reduced readability due to lack of explicit information in the code. The number of levels of indirection to actually figure out what the type of a variable is can be nuts. Hopefully better tools can avert this problem and keep our code concise.
(OK, in the quest to compile a more complete, concise answer (if I've missed anything, or gotten something wrong/inaccurate please comment), I have added to the beginning of the answer. Please note this isn't a language specification, so I'm not trying to make it exactly academically correct - just more like a reference card.)
A collection of quotes giving insight into the various conditions...
Personally, I thought there'd be more in the specification. I'm sure there must be, I'm just not searching for the right words...
There are a couple of sources however, and I've collected them together, but nothing really complete / comprehensive / understandable / that explains the above problems to me...:
"If a method body has more than one
expression, you must surround it with
curly braces {…}. You can omit the
braces if the method body has just one
expression."
From chapter 2, "Type Less, Do More", of Programming Scala:
"The body of the upper method comes
after the equals sign ‘=’. Why an
equals sign? Why not just curly braces
{…}, like in Java? Because semicolons,
function return types, method
arguments lists, and even the curly
braces are sometimes omitted, using an
equals sign prevents several possible
parsing ambiguities. Using an equals
sign also reminds us that even
functions are values in Scala, which
is consistent with Scala’s support of
functional programming, described in
more detail in Chapter 8, Functional
Programming in Scala."
From chapter 1, "Zero to Sixty: Introducing Scala", of Programming Scala:
"A function with no parameters can be
declared without parentheses, in which
case it must be called with no
parentheses. This provides support for
the Uniform Access Principle, such
that the caller does not know if the
symbol is a variable or a function
with no parameters.
The function body is preceded by "="
if it returns a value (i.e. the return
type is something other than Unit),
but the return type and the "=" can be
omitted when the type is Unit (i.e. it
looks like a procedure as opposed to a
function).
Braces around the body are not
required (if the body is a single
expression); more precisely, the body
of a function is just an expression,
and any expression with multiple parts
must be enclosed in braces (an
expression with one part may
optionally be enclosed in braces)."
"Functions with zero or one argument
can be called without the dot and
parentheses. But any expression can
have parentheses around it, so you can
omit the dot and still use
parentheses.
And since you can use braces anywhere
you can use parentheses, you can omit
the dot and put in braces, which can
contain multiple statements.
Functions with no arguments can be
called without the parentheses. For
example, the length() function on
String can be invoked as "abc".length
rather than "abc".length(). If the
function is a Scala function defined
without parentheses, then the function
must be called without parentheses.
By convention, functions with no
arguments that have side effects, such
as println, are called with
parentheses; those without side
effects are called without
parentheses."
From blog post Scala Syntax Primer:
"A procedure definition is a function
definition where the result type and
the equals sign are omitted; its
defining expression must be a block.
E.g., def f (ps) {stats} is
equivalent to def f (ps): Unit =
{stats}.
Example 4.6.3 Here is a declaration
and a de?nition of a procedure named
write:
trait Writer {
def write(str: String)
}
object Terminal extends Writer {
def write(str: String) { System.out.println(str) }
}
The code above is implicitly completed
to the following code:
trait Writer {
def write(str: String): Unit
}
object Terminal extends Writer {
def write(str: String): Unit = { System.out.println(str) }
}"
From the language specification:
"With methods which only take a single
parameter, Scala allows the developer
to replace the . with a space and omit
the parentheses, enabling the operator
syntax shown in our insertion operator
example. This syntax is used in other
places in the Scala API, such as
constructing Range instances:
val firstTen:Range = 0 to 9
Here again, to(Int) is a vanilla
method declared inside a class
(there’s actually some more implicit
type conversions here, but you get the
drift)."
From Scala for Java Refugees Part 6: Getting Over Java:
"Now, when you try "m 0", Scala
discards it being a unary operator, on
the grounds of not being a valid one
(~, !, - and +). It finds that "m" is
a valid object -- it is a function,
not a method, and all functions are
objects.
As "0" is not a valid Scala
identifier, it cannot be neither an
infix nor a postfix operator.
Therefore, Scala complains that it
expected ";" -- which would separate
two (almost) valid expressions: "m"
and "0". If you inserted it, then it
would complain that m requires either
an argument, or, failing that, a "_"
to turn it into a partially applied
function."
"I believe the operator syntax style
works only when you've got an explicit
object on the left-hand side. The
syntax is intended to let you express
"operand operator operand" style
operations in a natural way."
Which characters can I omit in Scala?
But what also confuses me is this quote:
"There needs to be an object to
receive a method call. For instance,
you cannot do “println “Hello World!”"
as the println needs an object
recipient. You can do “Console
println “Hello World!”" which
satisfies the need."
Because as far as I can see, there is an object to receive the call...
I find it easier to follow this rule of thumb: in expressions spaces alternate between methods and parameters. In your example, (service.findAllPresentations.get.first.votes.size) must be equalTo(2) parses as (service.findAllPresentations.get.first.votes.size).must(be)(equalTo(2)). Note that the parentheses around the 2 have a higher associativity than the spaces. Dots also have higher associativity, so (service.findAllPresentations.get.first.votes.size) must be.equalTo(2)would parse as (service.findAllPresentations.get.first.votes.size).must(be.equalTo(2)).
service findAllPresentations get first votes size must be equalTo 2 parses as service.findAllPresentations(get).first(votes).size(must).be(equalTo).2.
Actually, on second reading, maybe this is the key:
With methods which only take a single
parameter, Scala allows the developer
to replace the . with a space and omit
the parentheses
As mentioned on the blog post: http://www.codecommit.com/blog/scala/scala-for-java-refugees-part-6 .
So perhaps this is actually a very strict "syntax sugar" which only works where you are effectively calling a method, on an object, which takes one parameter. e.g.
1 + 2
1.+(2)
And nothing else.
This would explain my examples in the question.
But as I said, if someone could point out to be exactly where in the language spec this is specified, would be great appreciated.
Ok, some nice fellow (paulp_ from #scala) has pointed out where in the language spec this information is:
6.12.3:
Precedence and associativity of
operators determine the grouping of
parts of an expression as follows.
If there are several infix operations in an expression, then
operators with higher precedence bind
more closely than operators with lower
precedence.
If there are consecutive infix operations e0 op1 e1 op2 . . .opn en
with operators op1, . . . , opn of the
same precedence, then all these
operators must have the same
associativity. If all operators are
left-associative, the sequence is
interpreted as (. . . (e0 op1 e1) op2
. . .) opn en. Otherwise, if all
operators are rightassociative, the
sequence is interpreted as e0 op1 (e1
op2 (. . .opn en) . . .).
Postfix operators always have lower precedence than infix operators. E.g.
e1 op1 e2 op2 is always equivalent to
(e1 op1 e2) op2.
The right-hand operand of a
left-associative operator may consist
of several arguments enclosed in
parentheses, e.g. e op (e1, . . .
,en). This expression is then
interpreted as e.op(e1, . . . ,en).
A left-associative binary operation e1
op e2 is interpreted as e1.op(e2). If
op is rightassociative, the same
operation is interpreted as { val
x=e1; e2.op(x ) }, where x is a fresh
name.
Hmm - to me it doesn't mesh with what I'm seeing or I just don't understand it ;)
There aren't any. You will likely receive advice around whether or not the function has side-effects. This is bogus. The correction is to not use side-effects to the reasonable extent permitted by Scala. To the extent that it cannot, then all bets are off. All bets. Using parentheses is an element of the set "all" and is superfluous. It does not provide any value once all bets are off.
This advice is essentially an attempt at an effect system that fails (not to be confused with: is less useful than other effect systems).
Try not to side-effect. After that, accept that all bets are off. Hiding behind a de facto syntactic notation for an effect system can and does, only cause harm.

Resources