What are the precise rules for when you can omit parenthesis, dots, braces, = (functions), etc.? - syntax

What are the precise rules for when you can omit (omit) parentheses, dots, braces, = (functions), etc.?
For example,
(service.findAllPresentations.get.first.votes.size) must be equalTo(2).
service is my object
def findAllPresentations: Option[List[Presentation]]
votes returns List[Vote]
must and be are both functions of specs
Why can't I go:
(service findAllPresentations get first votes size) must be equalTo(2)
?
The compiler error is:
"RestServicesSpecTest.this.service.findAllPresentations
of type
Option[List[com.sharca.Presentation]]
does not take parameters"
Why does it think I'm trying to pass in a parameter? Why must I use dots for every method call?
Why must (service.findAllPresentations get first votes size) be equalTo(2) result in:
"not found: value first"
Yet, the "must be equalTo 2" of
(service.findAllPresentations.get.first.votes.size) must be equalTo 2, that is, method chaining works fine? - object chain chain chain param.
I've looked through the Scala book and website and can't really find a comprehensive explanation.
Is it in fact, as Rob H explains in Stack Overflow question Which characters can I omit in Scala?, that the only valid use-case for omitting the '.' is for "operand operator operand" style operations, and not for method chaining?

You seem to have stumbled upon the answer. Anyway, I'll try to make it clear.
You can omit dot when using the prefix, infix and postfix notations -- the so called operator notation. While using the operator notation, and only then, you can omit the parenthesis if there is less than two parameters passed to the method.
Now, the operator notation is a notation for method-call, which means it can't be used in the absence of the object which is being called.
I'll briefly detail the notations.
Prefix:
Only ~, !, + and - can be used in prefix notation. This is the notation you are using when you write !flag or val liability = -debt.
Infix:
That's the notation where the method appears between an object and it's parameters. The arithmetic operators all fit here.
Postfix (also suffix):
That notation is used when the method follows an object and receives no parameters. For example, you can write list tail, and that's postfix notation.
You can chain infix notation calls without problem, as long as no method is curried. For example, I like to use the following style:
(list
filter (...)
map (...)
mkString ", "
)
That's the same thing as:
list filter (...) map (...) mkString ", "
Now, why am I using parenthesis here, if filter and map take a single parameter? It's because I'm passing anonymous functions to them. I can't mix anonymous functions definitions with infix style because I need a boundary for the end of my anonymous function. Also, the parameter definition of the anonymous function might be interpreted as the last parameter to the infix method.
You can use infix with multiple parameters:
string substring (start, end) map (_ toInt) mkString ("<", ", ", ">")
Curried functions are hard to use with infix notation. The folding functions are a clear example of that:
(0 /: list) ((cnt, string) => cnt + string.size)
(list foldLeft 0) ((cnt, string) => cnt + string.size)
You need to use parenthesis outside the infix call. I'm not sure the exact rules at play here.
Now, let's talk about postfix. Postfix can be hard to use, because it can never be used anywhere except the end of an expression. For example, you can't do the following:
list tail map (...)
Because tail does not appear at the end of the expression. You can't do this either:
list tail length
You could use infix notation by using parenthesis to mark end of expressions:
(list tail) map (...)
(list tail) length
Note that postfix notation is discouraged because it may be unsafe.
I hope this has cleared all the doubts. If not, just drop a comment and I'll see what I can do to improve it.

Class definitions:
val or var can be omitted from class parameters which will make the parameter private.
Adding var or val will cause it to be public (that is, method accessors and mutators are generated).
{} can be omitted if the class has no body, that is,
class EmptyClass
Class instantiation:
Generic parameters can be omitted if they can be inferred by the compiler. However note, if your types don't match, then the type parameter is always infered so that it matches. So without specifying the type, you may not get what you expect - that is, given
class D[T](val x:T, val y:T);
This will give you a type error (Int found, expected String)
var zz = new D[String]("Hi1", 1) // type error
Whereas this works fine:
var z = new D("Hi1", 1)
== D{def x: Any; def y: Any}
Because the type parameter, T, is inferred as the least common supertype of the two - Any.
Function definitions:
= can be dropped if the function returns Unit (nothing).
{} for the function body can be dropped if the function is a single statement, but only if the statement returns a value (you need the = sign), that is,
def returnAString = "Hi!"
but this doesn't work:
def returnAString "Hi!" // Compile error - '=' expected but string literal found."
The return type of the function can be omitted if it can be inferred (a recursive method must have its return type specified).
() can be dropped if the function doesn't take any arguments, that is,
def endOfString {
return "myDog".substring(2,1)
}
which by convention is reserved for methods which have no side effects - more on that later.
() isn't actually dropped per se when defining a pass by name paramenter, but it is actually a quite semantically different notation, that is,
def myOp(passByNameString: => String)
Says myOp takes a pass-by-name parameter, which results in a String (that is, it can be a code block which returns a string) as opposed to function parameters,
def myOp(functionParam: () => String)
which says myOp takes a function which has zero parameters and returns a String.
(Mind you, pass-by-name parameters get compiled into functions; it just makes the syntax nicer.)
() can be dropped in the function parameter definition if the function only takes one argument, for example:
def myOp2(passByNameString:(Int) => String) { .. } // - You can drop the ()
def myOp2(passByNameString:Int => String) { .. }
But if it takes more than one argument, you must include the ():
def myOp2(passByNameString:(Int, String) => String) { .. }
Statements:
. can be dropped to use operator notation, which can only be used for infix operators (operators of methods that take arguments). See Daniel's answer for more information.
. can also be dropped for postfix functions
list tail
() can be dropped for postfix operators
list.tail
() cannot be used with methods defined as:
def aMethod = "hi!" // Missing () on method definition
aMethod // Works
aMethod() // Compile error when calling method
Because this notation is reserved by convention for methods that have no side effects, like List#tail (that is, the invocation of a function with no side effects means that the function has no observable effect, except for its return value).
() can be dropped for operator notation when passing in a single argument
() may be required to use postfix operators which aren't at the end of a statement
() may be required to designate nested statements, ends of anonymous functions or for operators which take more than one parameter
When calling a function which takes a function, you cannot omit the () from the inner function definition, for example:
def myOp3(paramFunc0:() => String) {
println(paramFunc0)
}
myOp3(() => "myop3") // Works
myOp3(=> "myop3") // Doesn't work
When calling a function that takes a by-name parameter, you cannot specify the argument as a parameter-less anonymous function. For example, given:
def myOp2(passByNameString:Int => String) {
println(passByNameString)
}
You must call it as:
myOp("myop3")
or
myOp({
val source = sourceProvider.source
val p = myObject.findNameFromSource(source)
p
})
but not:
myOp(() => "myop3") // Doesn't work
IMO, overuse of dropping return types can be harmful for code to be re-used. Just look at specification for a good example of reduced readability due to lack of explicit information in the code. The number of levels of indirection to actually figure out what the type of a variable is can be nuts. Hopefully better tools can avert this problem and keep our code concise.
(OK, in the quest to compile a more complete, concise answer (if I've missed anything, or gotten something wrong/inaccurate please comment), I have added to the beginning of the answer. Please note this isn't a language specification, so I'm not trying to make it exactly academically correct - just more like a reference card.)

A collection of quotes giving insight into the various conditions...
Personally, I thought there'd be more in the specification. I'm sure there must be, I'm just not searching for the right words...
There are a couple of sources however, and I've collected them together, but nothing really complete / comprehensive / understandable / that explains the above problems to me...:
"If a method body has more than one
expression, you must surround it with
curly braces {…}. You can omit the
braces if the method body has just one
expression."
From chapter 2, "Type Less, Do More", of Programming Scala:
"The body of the upper method comes
after the equals sign ‘=’. Why an
equals sign? Why not just curly braces
{…}, like in Java? Because semicolons,
function return types, method
arguments lists, and even the curly
braces are sometimes omitted, using an
equals sign prevents several possible
parsing ambiguities. Using an equals
sign also reminds us that even
functions are values in Scala, which
is consistent with Scala’s support of
functional programming, described in
more detail in Chapter 8, Functional
Programming in Scala."
From chapter 1, "Zero to Sixty: Introducing Scala", of Programming Scala:
"A function with no parameters can be
declared without parentheses, in which
case it must be called with no
parentheses. This provides support for
the Uniform Access Principle, such
that the caller does not know if the
symbol is a variable or a function
with no parameters.
The function body is preceded by "="
if it returns a value (i.e. the return
type is something other than Unit),
but the return type and the "=" can be
omitted when the type is Unit (i.e. it
looks like a procedure as opposed to a
function).
Braces around the body are not
required (if the body is a single
expression); more precisely, the body
of a function is just an expression,
and any expression with multiple parts
must be enclosed in braces (an
expression with one part may
optionally be enclosed in braces)."
"Functions with zero or one argument
can be called without the dot and
parentheses. But any expression can
have parentheses around it, so you can
omit the dot and still use
parentheses.
And since you can use braces anywhere
you can use parentheses, you can omit
the dot and put in braces, which can
contain multiple statements.
Functions with no arguments can be
called without the parentheses. For
example, the length() function on
String can be invoked as "abc".length
rather than "abc".length(). If the
function is a Scala function defined
without parentheses, then the function
must be called without parentheses.
By convention, functions with no
arguments that have side effects, such
as println, are called with
parentheses; those without side
effects are called without
parentheses."
From blog post Scala Syntax Primer:
"A procedure definition is a function
definition where the result type and
the equals sign are omitted; its
defining expression must be a block.
E.g., def f (ps) {stats} is
equivalent to def f (ps): Unit =
{stats}.
Example 4.6.3 Here is a declaration
and a de?nition of a procedure named
write:
trait Writer {
def write(str: String)
}
object Terminal extends Writer {
def write(str: String) { System.out.println(str) }
}
The code above is implicitly completed
to the following code:
trait Writer {
def write(str: String): Unit
}
object Terminal extends Writer {
def write(str: String): Unit = { System.out.println(str) }
}"
From the language specification:
"With methods which only take a single
parameter, Scala allows the developer
to replace the . with a space and omit
the parentheses, enabling the operator
syntax shown in our insertion operator
example. This syntax is used in other
places in the Scala API, such as
constructing Range instances:
val firstTen:Range = 0 to 9
Here again, to(Int) is a vanilla
method declared inside a class
(there’s actually some more implicit
type conversions here, but you get the
drift)."
From Scala for Java Refugees Part 6: Getting Over Java:
"Now, when you try "m 0", Scala
discards it being a unary operator, on
the grounds of not being a valid one
(~, !, - and +). It finds that "m" is
a valid object -- it is a function,
not a method, and all functions are
objects.
As "0" is not a valid Scala
identifier, it cannot be neither an
infix nor a postfix operator.
Therefore, Scala complains that it
expected ";" -- which would separate
two (almost) valid expressions: "m"
and "0". If you inserted it, then it
would complain that m requires either
an argument, or, failing that, a "_"
to turn it into a partially applied
function."
"I believe the operator syntax style
works only when you've got an explicit
object on the left-hand side. The
syntax is intended to let you express
"operand operator operand" style
operations in a natural way."
Which characters can I omit in Scala?
But what also confuses me is this quote:
"There needs to be an object to
receive a method call. For instance,
you cannot do “println “Hello World!”"
as the println needs an object
recipient. You can do “Console
println “Hello World!”" which
satisfies the need."
Because as far as I can see, there is an object to receive the call...

I find it easier to follow this rule of thumb: in expressions spaces alternate between methods and parameters. In your example, (service.findAllPresentations.get.first.votes.size) must be equalTo(2) parses as (service.findAllPresentations.get.first.votes.size).must(be)(equalTo(2)). Note that the parentheses around the 2 have a higher associativity than the spaces. Dots also have higher associativity, so (service.findAllPresentations.get.first.votes.size) must be.equalTo(2)would parse as (service.findAllPresentations.get.first.votes.size).must(be.equalTo(2)).
service findAllPresentations get first votes size must be equalTo 2 parses as service.findAllPresentations(get).first(votes).size(must).be(equalTo).2.

Actually, on second reading, maybe this is the key:
With methods which only take a single
parameter, Scala allows the developer
to replace the . with a space and omit
the parentheses
As mentioned on the blog post: http://www.codecommit.com/blog/scala/scala-for-java-refugees-part-6 .
So perhaps this is actually a very strict "syntax sugar" which only works where you are effectively calling a method, on an object, which takes one parameter. e.g.
1 + 2
1.+(2)
And nothing else.
This would explain my examples in the question.
But as I said, if someone could point out to be exactly where in the language spec this is specified, would be great appreciated.
Ok, some nice fellow (paulp_ from #scala) has pointed out where in the language spec this information is:
6.12.3:
Precedence and associativity of
operators determine the grouping of
parts of an expression as follows.
If there are several infix operations in an expression, then
operators with higher precedence bind
more closely than operators with lower
precedence.
If there are consecutive infix operations e0 op1 e1 op2 . . .opn en
with operators op1, . . . , opn of the
same precedence, then all these
operators must have the same
associativity. If all operators are
left-associative, the sequence is
interpreted as (. . . (e0 op1 e1) op2
. . .) opn en. Otherwise, if all
operators are rightassociative, the
sequence is interpreted as e0 op1 (e1
op2 (. . .opn en) . . .).
Postfix operators always have lower precedence than infix operators. E.g.
e1 op1 e2 op2 is always equivalent to
(e1 op1 e2) op2.
The right-hand operand of a
left-associative operator may consist
of several arguments enclosed in
parentheses, e.g. e op (e1, . . .
,en). This expression is then
interpreted as e.op(e1, . . . ,en).
A left-associative binary operation e1
op e2 is interpreted as e1.op(e2). If
op is rightassociative, the same
operation is interpreted as { val
x=e1; e2.op(x ) }, where x is a fresh
name.
Hmm - to me it doesn't mesh with what I'm seeing or I just don't understand it ;)

There aren't any. You will likely receive advice around whether or not the function has side-effects. This is bogus. The correction is to not use side-effects to the reasonable extent permitted by Scala. To the extent that it cannot, then all bets are off. All bets. Using parentheses is an element of the set "all" and is superfluous. It does not provide any value once all bets are off.
This advice is essentially an attempt at an effect system that fails (not to be confused with: is less useful than other effect systems).
Try not to side-effect. After that, accept that all bets are off. Hiding behind a de facto syntactic notation for an effect system can and does, only cause harm.

Related

Pharo Smalltalk Method Execution

I have a few test cases that I need to write a method for, and how they execute the method is like this:
Planets with: aString , anotherString
Where "Planets" is a class and "with:" is a class method. But my confusion is in the way that arguments are given, because I was under the impression that methods with multiple arguments get executed like "methodName: arg1 Arg2: arg2", but in here the two arguments are separated by comma. Can somebody explain this to me please?
It has to do with the order of precedence for messages. Unary messages get handled first, then binary messages, and finally keyword messages.
Unary messages have no arguments (new, sqrt, isPrime)
Binary messages go between two objects (like a + or in your case the ,).
Keyword messages end in a colon (like with:) and sometimes there is more than one (like to: do:)
The binary message , (concatenate two strings) is processed first because it has a higher precedence. Then the keyword message with: is processed after because it has a lower precedence. Messages inside of parentheses automatically get the highest precedence and are evaluated first. When there is a "tie" (multiple messages have the same precedence), they are evaluated left to right.
One weird thing about Smalltalk is that + - * / all have the same binary message precedence. So 8 + 2 * 4 evaluates to 40 not 16 like you might expect.
Most likely, the class method #with: receives a String as its only argument. This means that #with: is a keyword message with arity 1. In the expression
Planets with: aString , anotherString
there are two messages: (1) the message with selector #with: and (2) the message with selector #,. The latter has a receiver aString and an argument anotherString. This is a binary message with arity 1 too.
In fact, one could equally write
Planets with: (aString , anotherString)
to emphasize the role of argument played by the parenthesized expression. We usually don't do that because precedence rules make it unnecessary.
Now note that in the declaration of the method with selector#with: you would have
Planets class >> #with: aString
"some code here"
But one thing is the declaration of a method and another its invocation, in your case
Plantes with: aString , anotherString
is an expression aimed at sending the message #with: to Planets with an argument that happens to be the concatenation of two strings.
In sum, when you declare/define the method the argument is aString, but when you invoke it (i.e., when you send the message) the argument is anything that evaluates to a String.
As a side note I would indicate that Planets isn't a good name for a class. In fact, class names are usually in singular, as they represent a concept, not a collection of instances of said concept.

Trying to understand this ruby syntax

I am new to ruby and lots of things are confusing me. I believe this specific one is from Sorbet which is some type checking library? not sure. This specific piece of code is right before a method declaration
sig { params(order: T::Hash[
String, T.any(
T.nilable(String), T::Hash[
String, T.any(
Integer, T.nilable(String)
)
]
)
]).returns(Types::Order) }
def self.build_prescription(prescription)
# method implementation
The order object is a json object coming from REST API. Can someone explain what this nesting thing is going on.
This is indeed a Sorbet signature. You can read more about Sorbet in their official documentation
The signature itself in this case is just describing the shape of the parameters and return type of the build_prescription method.
Slightly reformatting to make it easier to annotate:
sig { # A ruby method added by Sorbet to indicate that the signature is starting.
params( # Start to declare the parameters that the method takes
order: T::Hash[ # First param. In this case, it's a Hash...
String, # ... where they key is a String ...
T.any( # ... and the value can be either: ...
T.nilable(String), ... # a nilable String
T::Hash[ # or a Hash ...
String, # ... where the key is a String...
T.any(Integer, T.nilable(String)) # ... and the value is either an Integer or nilable string String
]
)
])
.returns(Types::Order) # Declaration of what the method returns
}
def self.build_prescription(prescription) # the regular Ruby method declaration
Note, though, that this will fail a Sorbet validation, as the signature declares the parameter as order, while the method declares it as prescription. Those two names should match.
There's a way to re-write this signature to make it a bit nicer to read/understand
sig do
params(
prescription: T::Hash[
String,
T.nilable(
T.any(
String,
T::Hash[String, T.nilable(T.any(Integer, String)]
)
)
])
.returns(Types::Order) # Declaration of what the method returns
}
def self.build_prescription(prescription)
Note that I'm moving the T.nilables out one level, as T.any(Integer, T.nilable(String)) means that same as T.nilable(T.any(Integer, String)) but it's more immediately obvious for a reader that the value can be nil
Since you are specifically asking about syntax, not semantics, I will answer your question about syntax.
What you see here, is called a message send. (In other programming languages like Java or C#, it might be called a method call.) More precisely, it is a message send with an implicit receiver.
A message is always sent to a specific receiver (just like a message in the real world). The general syntax of a message send looks like this:
foo.bar(baz, quux: 23) {|garple| glorp(garple) }
Here,
foo is the receiver, i.e. the object that receives the message. Note that foo can of course be any arbitrary Ruby expression, e.g. (2 + 3).to_s.
bar is the message selector, or simply message. It tells the receiver object what to do.
The parentheses after the message selector contain the argument list. Here, we have one positional argument, which is the expression baz (which could be either a local variable or another message send, more on that later), and one keyword argument which is the keyword quux with the value 23. (Again, the value can be any arbitrary Ruby expression.) Note: there a couple of other types of arguments as well in addition to positional arguments and keyword arguments, namely splat arguments and an optional explicit block argument.
After the argument list comes the literal block argument. Every message send in Ruby can have a literal block argument … it is up to the method that gets invoked to ignore it, use it, or do whatever it wants with it.
A block is a lightweight piece of executable code, and so, just like methods, it has a parameter list and a body. The parameter list is delimited by | pipe symbols – in this case, there is only one positional parameter named garple, but it can have all the same kinds of parameters methods can have, plus block-local variables. And the body, of course, can contain arbitrary Ruby expressions.
Now, the important thing here is that a lot of those elements are optional:
You can leave out the parentheses: foo.bar(baz, quux: 23) is the same as foo.bar baz, quux: 23, which also implies that foo.bar() is the same as foo.bar.
You can leave out the explicit receiver, in which case the implicit receiver is self, i.e. self.foo(bar, baz: 23) is the same as foo(bar, baz: 23), which is of course then the same as foo bar, baz: 23.
If you put the two together, that means that e.g. self.foo() is the same as foo, which I was alluding to earlier: if you just foo on its own without context, you don't actually know whether it is local variable or a message send. Only if you see either a receiver or an argument (or both), can you be sure that it is a message send, and only if you see an assignment in the same scope can be sure that it is a variable. If you see neither of those things it could be either.
You can leave out the block parameter list of you're not using it, and you can leave out the block altogether as well.
So let's dissect the syntax of what you are seeing here. The first layer is
sig {
# stuff
}
We know that this is a message send and not a local variable, because there is a literal block argument, and variables don't take arguments, only message sends do.
So, this is sending the message sig to the implicit receiver self (which in a module definition body is just the module itself), and passes a literal block as the only argument.
The block has no parameter list, only a body. The content of the body is
params(
# stuff
).returns(Types::Order)
Again, we know that params is a message send because it takes an argument. So, this is sending the message params to the implicit receiver self (which is here still the module itself, because blocks lexically capture self, although that is part of the language semantics and you asked strictly about syntax). It also passes one argument to the message send, which we will look at later.
Then we have another message send. How do we know that? Well, it takes an argument and has a receiver. We are sending the message returns to the object that was returned by the params message send, passing the expression Types::Order as the only positional argument.
Types::Order, in turn, is a constant reference (Types), the namespace resolution operator (::), followed by another constant reference (Order).
Next, let's look at the argument to params:
params(order: T::Hash[
# stuff
])
Here we have a keyword argument order whose value is the expression T::Hash[ … ]. T::Hash is of course again a constant reference, the namespace resolution operator, and another constant reference.
So, what is []? Actually, that is just another message send. Ruby has syntacic sugar for a limited, fixed, list of special messages. Some examples:
foo.call(bar) is the same as foo.(bar).
foo.+(bar) is the same as foo + bar. (And similar for *, **, /, -, <<, >>, |, &, ==, ===, =~, !=, !==, !~, and a couple of others I am probably forgetting.)
foo.+# is the same as +foo. (And similar for -#.)
foo.! is the same as !foo. (And similar for ~.)
self.`("Hello") is the same as `Hello`, which is somewhat obscure.
foo.[](bar, baz) is the same as foo[bar, baz].
foo.[]=(bar, baz, quux) is the same as foo[bar, baz] = quux.
So, this is simply sending the message [] to the result of dereferencing the constant Hash within the namespace of the object obtained by dereferencing the constant T, and passing two positional arguments.
The first positional argument is String, which is again a constant reference. The second positional argument is the expression T.any( … ), which is a constant reference to the constant T, and then sending the message any to the object referenced by that constant, passing two positional arguments.
The first argument is the expression T.nilable(String), which is dereferencing the constant T, sending the message nilable to the result of dereferencing the constant T, passing a single positional argument, which is the result of dereferencing the constant String.
The second argument is the expression T::Hash[ … ] … and I am going to stop here, because there is really nothing more to explain here. There's constants, message sends, and arguments, and we've seen all of those multiple times before.
So, to summarize, as to your question about syntax: the syntax elements we are seeing here are
message sends
arguments
constants
the namespace resolution operator (which is actually not really a separate syntax element, but simply one of many operators)
and a block literal

Early or late argument evaluation in golang?

In my program I do a series of sequential checks in this manner:
var value int
if !(ParseOrFail(inputStrVal, &value) &&
Validate(value)) {
return SomeErr
}
I know that Validate is called only if ParseOrFail returns true, but I'm not sure whether in all such scenarios it will get the updated value.
Is it correct to do so? Or must I pass a pointer to Validate ?
Playground link: https://play.golang.org/p/l6XHbgQjFs
The Go Programming Language
Specification
Expressions
An expression specifies the computation of a value by applying
operators and functions to operands.
Operands
Operands denote the elementary values in an expression. An operand may
be a literal, a (possibly qualified) non-blank identifier denoting a
constant, variable, or function, a method expression yielding a
function, or a parenthesized expression.
Order of evaluation
At package level, initialization dependencies determine the evaluation
order of individual initialization expressions in variable
declarations. Otherwise, when evaluating the operands of an
expression, assignment, or return statement, all function calls,
method calls, and communication operations are evaluated in lexical
left-to-right order.
Calls
Given an expression f of function type F,
f(a1, a2, … an)
calls f with arguments a1, a2, … an. Except for one special case,
arguments must be single-valued expressions assignable to the
parameter types of F and are evaluated before the function is called.
The type of the expression is the result type of F. A method
invocation is similar but the method itself is specified as a selector
upon a value of the receiver type for the method.
Logical operators
Logical operators apply to boolean values and yield a result of the
same type as the operands. The right operand is evaluated
conditionally.
&& conditional AND p && q is "if p then q else false"
|| conditional OR p || q is "if p then true else q"
! NOT !p is "not p"
The behavior of your code is defined in The Go Programming Language Specification.
var value int
if !(ParseOrFail(inputStrVal, &value) && Validate(value)) {
return SomeErr
}
Or, in pseudocode,
ParseOrFail arguments are evaluated
ParseOrFail is called
if ParseOrFail == true
Validate arguments are evaluated
Validate is called
That is, in your example (https://play.golang.org/p/l6XHbgQjFs), late evaluation.

Is Odersky serious with "bills !*&^%~ code!"?

In his book programming in scala (Chapter 5 Section 5.9 Pg 93)
Odersky mentioned this expression "bills !*&^%~ code!"
In the footnote on same page:
"By now you should be able to figure out that given this code,the Scala compiler would
invoke (bills.!*&^%~(code)).!()."
That's a bit to cryptic for me, could someone explain what's going on here?
What Odersky means to say is that it would be possible to have valid code looking like that. For instance, the code below:
class BadCode(whose: String, source: String) {
def ! = println(whose+", what the hell do you mean by '"+source+"'???")
}
class Programmer(who: String) {
def !*&^%~(source: String) = new BadCode(who, source)
}
val bills = new Programmer("Bill")
val code = "def !*&^%~(source: String) = new BadCode(who, source)"
bills !*&^%~ code!
Just copy&paste it on the REPL.
The period is optional for calling a method that takes a single parameter, or has an empty parameter list.
When this feature is utilized, the next chunk after the space following the method name is assumed to be the single parameter.
Therefore,
(bills.!*&^%~(code)).!().
is identical to
bills !*&^%~ code!
The second exclamation mark calls a method on the returned value from the first method call.
I'm not sure if the book provides method signatures but I assume it's just a comment on Scala's syntactic sugar so it assumes if you type:
bill add monkey
where there is an object bill which has a method add which takes a parameter then it automatically interprets it as:
bill.add(monkey)
Being a little Scala rusty, I'm not entirely sure how it splits code! into (code).!() except for a vague tickling of the grey cells that the ! operator is used to fire off an actor which in compiler terms might be interpretted as an implicit .!() method on the object.
The combination of the '.()' being optional with method calls (as Wysawyg explained above) and the ability to use (almost) whatever characters you like for naming methods, makes it possible to write methods in Scala that look like operator overloading. You can even invent your own operators.
For example, I have a program that deals with 3D computer graphics. I have my own class Vector for representing a 3D vector:
class Vector(val x: Double, val y: Double, val z: Double) {
def +(v: Vector) = new Vector(x + v.x, y + v.y, z + v.z)
// ...etc.
}
I've also defined a method ** (not shown above) to compute the cross product of two vectors. It's very convenient that you can create your own operators like that in Scala, not many other programming languages have this flexibility.

List of Scala's "magic" functions

Where can I find a list of Scala's "magic" functions, such as apply, unapply, update, +=, etc.?
By magic-functions I mean functions which are used by some syntactic sugar of the compiler, for example
o.update(x,y) <=> o(x) = y
I googled for some combination of scala magic and synonyms of functions, but I didn't find anything.
I'm not interested with the usage of magic functions in the standard library, but in which magic functions exists.
As far as I know:
Getters/setters related:
apply
update
identifier_=
Pattern matching:
unapply
unapplySeq
For-comprehensions:
map
flatMap
filter
withFilter
foreach
Prefixed operators:
unary_+
unary_-
unary_!
unary_~
Beyond that, any implicit from A to B. Scala will also convert A <op>= B into A = A <op> B, if the former operator isn't defined, "op" is not alphanumeric, and <op>= isn't !=, ==, <= or >=.
And I don't believe there's any single place where all of Scala's syntactic sugars are listed.
In addition to update and apply, there are also a number of unary operators which (I believe) qualify as magical:
unary_+
unary_-
unary_!
unary_~
Add to that the regular infix/suffix operators (which can be almost anything) and you've got yourself the complete package.
You really should take a look at the Scala Language Specification. It is the only authoritative source on this stuff. It's not that hard to read (as long as you're comfortable with context-free grammars), and very easily searchable. The only thing it doesn't specify well is the XML support.
Sorry if it's not exactly answering your question, but my favorite WTF moment so far is # as assignment operator inside pattern match. Thanks to soft copy of "Programming in Scala" I found out what it was pretty quickly.
Using # we can bind any part of a pattern to a variable, and if the pattern match succeeds, the variable will capture the value of the sub-pattern. Here's the example from Programming in Scala (Section 15.2 - Variable Binding):
expr match {
case UnOp("abs", e # UnOp("abs", _)) => e
case _ =>
}
If the entire pattern match succeeds,
then the portion that matched the
UnOp("abs", _) part is made available
as variable e.
And here's what Programming Scala says about it.
That link no longer works. Here is one that does.
I'll also add _* for pattern matching on an arbitrary number of parameters like
case x: A(_*)
And operator associativity rule, from Odersky-Spoon-Venners book:
The associativity of an operator in Scala is determined by its last
character. As mentioned on <...>, any method that ends
in a ‘:’ character is invoked on its right operand, passing in the
left operand. Methods that end in any other character are the other
way around. They are invoked on their left operand, passing in the
right operand. So a * b yields a.*(b), but a ::: b yields b.:::(a).
Maybe we should also mention syntactic desugaring of for expressions which can be found here
And (of course!), alternative syntax for pairs
a -> b //converted to (a, b), where a and b are instances
(as correctly pointed out, this one is just an implicit conversion done through a library, so it's probably not eligible, but I find it's a common puzzler for newcomers)
I'd like to add that there is also a "magic" trait - scala.Dynamic:
A marker trait that enables dynamic invocations. Instances x of this trait allow method invocations x.meth(args) for arbitrary method names meth and argument lists args as well as field accesses x.field for arbitrary field names field.
If a call is not natively supported by x (i.e. if type checking fails), it is rewritten according to the following rules:
foo.method("blah") ~~> foo.applyDynamic("method")("blah")
foo.method(x = "blah") ~~> foo.applyDynamicNamed("method")(("x", "blah"))
foo.method(x = 1, 2) ~~> foo.applyDynamicNamed("method")(("x", 1), ("", 2))
foo.field ~~> foo.selectDynamic("field")
foo.varia = 10 ~~> foo.updateDynamic("varia")(10)
foo.arr(10) = 13 ~~> foo.selectDynamic("arr").update(10, 13)
foo.arr(10) ~~> foo.applyDynamic("arr")(10)
As of Scala 2.10, defining direct or indirect subclasses of this trait is only possible if the language feature dynamics is enabled.
So you can do stuff like
import scala.language.dynamics
object Dyn extends Dynamic {
def applyDynamic(name: String)(a1: Int, a2: String) {
println("Invoked " + name + " on (" + a1 + "," + a2 + ")");
}
}
Dyn.foo(3, "x");
Dyn.bar(3, "y");
They are defined in the Scala Language Specification.
As far as I know, there are just three "magic" functions as you mentioned.
Scalas Getter and Setter may also relate to your "magic":
scala> class Magic {
| private var x :Int = _
| override def toString = "Magic(%d)".format(x)
| def member = x
| def member_=(m :Int){ x = m }
| }
defined class Magic
scala> val m = new Magic
m: Magic = Magic(0)
scala> m.member
res14: Int = 0
scala> m.member = 100
scala> m
res15: Magic = Magic(100)
scala> m.member += 99
scala> m
res17: Magic = Magic(199)

Resources