redefining a single ruby method on a single instance with a lambda - ruby

In Ruby, is there a way to redefine a method of a particular instance of a class using a proc? For example:
class Foo
def bar()
return "hello"
end
end
x = Foo.new
y = Foo.new
(Something like):
y.method(:bar) = lambda { return "goodbye" }
x.bar
y.bar
Producing:
hello
goodbye
Thanks.

def define_singleton_method_by_proc(obj, name, block)
metaclass = class << obj; self; end
metaclass.send(:define_method, name, block)
end
p = proc { "foobar!" }
define_singleton_method_by_proc(y, :bar, p)
or, if you want to monkey-patch Object to make it easy
class Object
# note that this method is already defined in Ruby 1.9
def define_singleton_method(name, callable = nil, &block)
block ||= callable
metaclass = class << self; self; end
metaclass.send(:define_method, name, block)
end
end
p = proc { "foobar!" }
y.define_singleton_method(:bar, p)
#or
y.define_singleton_method(:bar) do
"foobar!"
end
or, if you want to define your proc inline, this may be more readable
class << y
define_method(:bar, proc { "foobar!" })
end
or,
class << y
define_method(:bar) { "foobar!" }
end
this is the most readable, but probably doesn't fit your needs
def y.bar
"goodbye"
end
This question is highly related

I'm not sure what version of Ruby this was added in (at least 1.8.7), but there seems to be an even simpler way of doing this:
str1 = "Hello"
str2 = "Goodbye"
def str1.to_spanish
"Hola"
end
puts str1 # => Hello
puts str1.to_spanish # => Hola
puts str2 # => Goodbye
puts str2.to_spanish # => Throws a NoMethodError
Learnt about this whilst reading the Ruby Koans (about_class_methods.rb lesson).
I'm still not entirely sure what the purpose of this is since it seems a bit dangerous to me.

You can use the syntax class <<object to get an object's "singleton class" (that's a special parent class belonging only to that object) and define methods only for that instance. For example:
str1 = "Hello"
str2 = "Foo"
class <<str1
def to_spanish
'Hola'
end
end
Now if you do str1.to_spanish, it will return "Hola", but str2.to_spanish will give you a NoMethodFound exception.

Related

Understanding returning from procs in Ruby

I was wondering how to pass a block to a method which will make the method return on yield.
The naive aproach doesn't work:
def run(&block)
block.call
end
run { return :foo } # => LocalJumpError
Wrapping in another proc has the same effect:
def run(&block)
proc { block.call }.call
end
run { return :bar } # => LocalJumpError
So I thought that the return statement is bound to the receiver of the current binding. However, trying it out with instance_eval proved me wrong:
class ProcTest
def run(&block)
puts "run: #{[binding.local_variables, binding.receiver]}"
instance_eval(&block)
end
end
pt = ProcTest.new
binding_inspector = proc { puts "proc: #{[binding.local_variables, binding.receiver]}" }
puts "main: #{[binding.local_variables, binding.receiver]}"
# => main: [[:pt, :binding_inspector], main]
binding_inspector.call
# => proc: [[:pt, :binding_inspector], main]
pt.run(&binding_inspector)
# => run: [[:block], #<ProcTest:0x007f4987b06508>]
# => proc: [[:pt, :binding_inspector], #<ProcTest:0x007f4987b06508>]
pt.run { return :baz }
# => run: [[:block], #<ProcTest:0x007f4987b06508>]
# => LocalJumpError
So the questions are:
How can this be done?
How is the return context tied to the return statement. Is this connection accessible via the language's API?
Was this implemented in such manner intentionally? If yes - why? If no - what are the obstacles to fix it?
I thought that the return statement is bound to the receiver of the current binding.
Only methods have an receiver. return is not a method:
defined? return #=> "expression"
Trying to invoke it as a method doesn't work:
def foo
send(:return, 123)
end
foo #=> undefined method `return'
trying it out with instance_eval proved me wrong
Though instance_eval evaluates the block in the context of the receiver (so you have access to the receivers instance methods and instance variables):
class MyClass
def foo(&block)
#var = 123
instance_eval(&block)
end
end
MyClass.new.foo { instance_variables }
#=> [:#var]
... it does not evaluate the block in the current binding (so you don't have access to any local variables):
class MyClass
def foo(&block)
var = 123
instance_eval(&block)
end
end
MyClass.new.foo { local_variables }
#=> []
How can this be done?
You could use eval, but that requires a string:
def foo
var = 123
eval yield
nil
end
foo { "return var * 2" }
#=> 246
Or by passing the binding to the block (again using eval):
def foo
var = 123
yield binding
nil
end
foo { |b| b.eval "return var * 2" }
#=> 246
return in a block returns from the enclosing method when the block is defined (ie, the closure in which the block is created). In your example, there is no enclosing block to return from, hence your exception.
This is easily demonstrated:
def foo(&block)
puts yield
puts "we won't get here"
end
def bar
foo { return "hi from the block"; puts "we never get here" }
puts "we never get here either"
end
puts bar # => "hi from the block" (only printed once; the puts in `foo` is not executed)
Return in a proc will immediately return out of the proc, not out of the method on the stack under the proc:
def foo(&block)
puts yield
puts "we will get here"
end
def bar
foo &->{ return "hi from the proc"; puts "we never get here" }
puts "we will get here too"
end
puts bar
# hi from the proc # puts from foo
# we will get here # puts from foo
# we will get here too # puts from bar
Because of these behaviors, there is no way to achieve your desired behavior, in which a return in the given block will execute a return in the method from which the block is invoked, unless the block was defined within that scope, since doing so would require one of the existing behaviors not work.
You could achieve something like this with throw...catch, which is kinda-sorta useful as a way to zip up the stack from an arbitrary depth, but you can't return arbitrary values with it:
def foo(&block)
yield
puts "we won't get here"
end
catch(:escape) do
foo &->{ throw :escape }
end

Calling super without arguments

According to the documentation for modules and classes, calling super (without arguments or parentheses) calls the parent method with the same arguments:
When used without any arguments super uses the arguments given to the subclass method.
Assigning a new value to the "argument variable" seems to alter this behavior:
class MyClass
def foo(arg)
puts "MyClass#foo(#{arg.inspect})"
end
end
class MySubclass < MyClass
def foo(arg)
puts "MySubclass#foo(#{arg.inspect})"
super
arg = 'new value'
super
end
end
MySubclass.new.foo('inital value')
Output:
MySubclass#foo("inital value")
MyClass#foo("inital value")
MyClass#foo("new value") # <- not the argument given to MySubclass#foo
Is this expected?
Update
This seems to be the expected behavior for positional and keyword arguments, but it doesn't work for block arguments:
class MyClass
def foo(&block)
puts "MyClass#foo { #{block.call.inspect} }"
end
end
class MySubclass < MyClass
def foo(&block)
puts "MySubclass#foo { #{block.call.inspect} }"
super
block = Proc.new { 'new value' }
super
end
end
MySubclass.new.foo { 'initial value' }
Output:
MySubclass#foo { "initial value" }
MyClass#foo { "initial value" }
MyClass#foo { "initial value" }
Lets take one example from the Ruby core:
Keyword2
class Base
def single(a) a end
def double(a, b) [a,b] end
def array(*a) a end
def optional(a = 0) a end
def keyword(**a) a end
end
class Keyword2 < Base
def keyword(foo: "keyword2")
foo = "changed1"
x = super
foo = "changed2"
y = super
[x, y]
end
end
Now, see the test case :-
def test_keyword2
assert_equal([{foo: "changed1"}, {foo: "changed2"}], Keyword2.new.keyword)
end
Above example exactly mathes the keyword documentation.
Called with no arguments and no empty argument list, super calls the appropriate method with the same arguments, and the same code block, as those used to call the current method. Called with an argument list or arguments, it calls the appropriate methods with exactly the specified arguments (including none, in the case of an empty argument list indicated by empty parentheses).
same arguments means it is saying the current values of argument variables.test_super.rb files contains all the varieties of stuffs we can do with super in Ruby.
No, it work with block too (taken from core) :
a = Class.new do
def foo
yield
end
end
b = Class.new(a) do
def foo
super{
"b"
}
end
end
b.new.foo{"c"} # => "b"
But, have no idea why the below is giving "c"? This is actually the updated question of the OP:
c = Class.new do
def foo(&block)
block.call
end
end
d = Class.new(c) do
def foo(&block)
block = -> { "b" }
super
end
end
d.new.foo{"c"} # => "c"
It seems to be the expected behavior, based on the RubySpec anyway.
module RestArgsWithSuper
class A
def a(*args)
args
end
end
class B < A
def a(*args)
args << "foo"
super
end
end
end
(language/fixtures/super.rb).
It's then expected that the arguments are modified:
it "passes along modified rest args when they weren't originally empty" do
Super::RestArgsWithSuper::B.new.a("bar").should == ["bar", "foo"]
end
(language/super_spec.rb)
It's the expected behaviour. Technically, arg is the same argument, it just points to another value.
This answer might explain it better: https://stackoverflow.com/a/1872159/163640

Just for fun - add methods to an object via a block

Just for fun, again, but is it possible to take a block that contains method definitions and add those to an object, somehow? The following doesn't work (I never expected it to), but just so you get the idea of what I'm playing around with.
I do know that I can reopen a class with class << existing_object and add methods that way, but is there a way for code to pass that information in a block?
I guess I'm trying to borrow a little Java thinking here.
def new(cls)
obj = cls.new
class << obj
yield
end
obj
end
class Cat
def meow
puts "Meow"
end
end
cat = new(Cat) {
def purr
puts "Prrrr..."
end
}
cat.meow
# => Meow
# Not working
cat.purr
# => Prrrr...
EDIT | Here's the working version of the above, based on edgerunner's answer:
def new(cls, &block)
obj = cls.new
obj.instance_eval(&block)
obj
end
class Cat
def meow
puts "Meow"
end
end
cat = new(Cat) {
def purr
puts "Prrrr..."
end
}
cat.meow
# => Meow
cat.purr
# => Prrrr...
You can use class_eval(also aliased as module_eval) or instance_eval to evaluate a block in the context of a class/module or an object instance respectively.
class Cat
def meow
puts "Meow"
end
end
Cat.module_eval do
def purr
puts "Purr"
end
end
kitty = Cat.new
kitty.meow #=> Meow
kitty.purr #=> Purr
kitty.instance_eval do
def purr
puts "Purrrrrrrrrr!"
end
end
kitty.purr #=> Purrrrrrrrrr!
Yes
I suspect you thought of this and were looking for some other way, but just in case...
class A
def initialize
yield self
end
end
o = A.new do |o|
class << o
def purr
puts 'purr...'
end
end
end
o.purr
=> purr...
For the record, this isn't the usual way to dynamically add a method. Typically, a dynamic method starts life as a block itself, see, for example, *Module#define_method*.

Overriding instance variable array's operators in Ruby

Sorry for the poor title, I don't really know what to call this.
I have something like this in Ruby:
class Test
def initialize
#my_array = []
end
attr_accessor :my_array
end
test = Test.new
test.my_array << "Hello, World!"
For the #my_array instance variable, I want to override the << operator so that I can first process whatever is being inserted to it. I've tried #my_array.<<(value) as a method in the class, but it didn't work.
I think you're looking for this:
class Test
def initialize
#myarray = []
class << #myarray
def <<(val)
puts "adding #{val}" # or whatever it is you want to do first
super(val)
end
end
end
attr_accessor :myarray
end
There's a good article about this and related topics at Understanding Ruby Singleton Classes.
I'm not sure that's actually something you can do directly.
You can try creating a derived class from Array, implementing your functionality, like:
class MyCustomArray < Array
def initialize &process_append
#process_append = &process_append
end
def << value
raise MyCustomArrayError unless #process_append.call value
super.<< value
end
end
class Test
def initialize
#my_array = MyCustomArray.new
end
attr_accessor :my_array
end
Here you go...
$ cat ra1.rb
class Aa < Array
def << a
puts 'I HAVE THE CONTROL!!'
super a
end
end
class Test
def initialize
#my_array = Aa.new
end
attr_accessor :my_array
end
test = Test.new
test.my_array << "Hello, World!"
puts test.my_array.inspect
$ ruby ra1.rb
I HAVE THE CONTROL!!
["Hello, World!"]
$
a = []
a.instance_eval("alias old_add <<; def << value; puts value; old_add(value); end")
Very hackish, and off the top of my head ...
Just change 'puts value' with whatever preprocessing you want to do.
You can extend the metaclass of any individual object, without having to create a whole new class:
>> i = []
=> []
>> class << i
>> def <<(obj)
>> puts "Adding "+obj.to_s
>> super
>> end
>> end
=> nil
>> i << "foo"
Adding foo
=> ["foo"]
i extend the class, creating a method which provides access to the instance variable.
class KeywordBid
def override_ignore_price(ignore_price)
#ignorePrice = ignore_price
end
end

Is 'yield self' the same as instance_eval?

Is there any difference if you define Foo with instance_eval: . . .
class Foo
def initialize(&block)
instance_eval(&block) if block_given?
end
end
. . . or with 'yield self':
class Foo
def initialize
yield self if block_given?
end
end
In either case you can do this:
x = Foo.new { def foo; 'foo'; end }
x.foo
So 'yield self' means that the block after Foo.new is always evaluated in the context of the Foo class.
Is this correct?
Your two pieces of code do very different things. By using instance_eval you're evaluating the block in the context of your object. This means that using def will define methods on that object. It also means that calling a method without a receiver inside the block will call it on your object.
When yielding self you're passing self as an argument to the block, but since your block doesn't take any arguments, it is simply ignored. So in this case yielding self does the same thing as yielding nothing. The def here behaves exactly like a def outside the block would, yielding self does not actually change what you define the method on. What you could do is:
class Foo
def initialize
yield self if block_given?
end
end
x = Foo.new {|obj| def obj.foo() 'foo' end}
x.foo
The difference to instance_eval being that you have to specify the receiver explicitly.
Edit to clarify:
In the version with yield, obj in the block will be the object that is yielded, which in this case is is the newly created Foo instance. While self will have the same value it had outside the block. With the instance_eval version self inside the block will be the newly created Foo instance.
They are different. yield(self) does not change the value of self inside the block, while instance_eval(&block) does.
class Foo
def with_yield
yield(self)
end
def with_instance_eval(&block)
instance_eval(&block)
end
end
f = Foo.new
f.with_yield do |arg|
p self
# => main
p arg
# => #<Foo:0x100124b10>
end
f.with_instance_eval do |arg|
p self
# => #<Foo:0x100124b10>
p arg
# => #<Foo:0x100124b10>
end
You just can drop the self keyword
class Foo
def initialize
yield if block_given?
end
end
Update from comments
Using yield there is a bit new to my taste, specially when used outside irb.
However there is a big and significant difference between instance_eval approach and yield approach, check this snippet:
class Foo
def initialize(&block)
instance_eval(&block) if block_given?
end
end
x = Foo.new { def foo; 'foo'; end }
#=> #<Foo:0xb800f6a0>
x.foo #=> "foo"
z = Foo.new #=> #<Foo:0xb800806c>
z.foo #=>NoMethodError: undefined method `foo' for #<Foo:0xb800806c>
Check this one as well:
class Foo2
def initialize
yield if block_given?
end
end
x = Foo2.new { def foo; 'foo'; end } #=> #<Foo:0xb7ff1bb4>
x.foo #=> private method `foo' called for #<Foo2:0xb8004930> (NoMethodError)
x.send :foo => "foo"
z = Foo.new #=> #<Foo:0xb800806c>
z.send :foo => "foo"
As you can see the difference is that the former one is adding a singleton method foo to the object being initialized, while the later is adding a private method to all instances of Object class.

Resources