Sorry for the poor title, I don't really know what to call this.
I have something like this in Ruby:
class Test
def initialize
#my_array = []
end
attr_accessor :my_array
end
test = Test.new
test.my_array << "Hello, World!"
For the #my_array instance variable, I want to override the << operator so that I can first process whatever is being inserted to it. I've tried #my_array.<<(value) as a method in the class, but it didn't work.
I think you're looking for this:
class Test
def initialize
#myarray = []
class << #myarray
def <<(val)
puts "adding #{val}" # or whatever it is you want to do first
super(val)
end
end
end
attr_accessor :myarray
end
There's a good article about this and related topics at Understanding Ruby Singleton Classes.
I'm not sure that's actually something you can do directly.
You can try creating a derived class from Array, implementing your functionality, like:
class MyCustomArray < Array
def initialize &process_append
#process_append = &process_append
end
def << value
raise MyCustomArrayError unless #process_append.call value
super.<< value
end
end
class Test
def initialize
#my_array = MyCustomArray.new
end
attr_accessor :my_array
end
Here you go...
$ cat ra1.rb
class Aa < Array
def << a
puts 'I HAVE THE CONTROL!!'
super a
end
end
class Test
def initialize
#my_array = Aa.new
end
attr_accessor :my_array
end
test = Test.new
test.my_array << "Hello, World!"
puts test.my_array.inspect
$ ruby ra1.rb
I HAVE THE CONTROL!!
["Hello, World!"]
$
a = []
a.instance_eval("alias old_add <<; def << value; puts value; old_add(value); end")
Very hackish, and off the top of my head ...
Just change 'puts value' with whatever preprocessing you want to do.
You can extend the metaclass of any individual object, without having to create a whole new class:
>> i = []
=> []
>> class << i
>> def <<(obj)
>> puts "Adding "+obj.to_s
>> super
>> end
>> end
=> nil
>> i << "foo"
Adding foo
=> ["foo"]
i extend the class, creating a method which provides access to the instance variable.
class KeywordBid
def override_ignore_price(ignore_price)
#ignorePrice = ignore_price
end
end
Related
could you please explain me why the class variable cannot be accessed by attribute_accessors?
As i am trying here to have the list of all methods of all subclasses in one array it works a little different. It created array #method_names in every subclass with specific methods for every class ... so i do need to do a loop through subclasses.
What kind of variable/attribute is #method_names?
Thanks!
module First
class First_class
class << self
def info
puts "First_class method info."
puts #subclasses
puts #method_names
end
def inherited(subclass)
puts "#{subclass} located ..."
subclasses << subclass
end
def subclasses
#subclasses ||= []
end
def method_added(method_name)
puts "Method located #{method_name} ..."
method_names << method_name
end
def method_names
#method_names ||= []
end
end
def initialize
puts "Instance of First_class is created."
end
def first_method
end
end
class Second_class < First_class
def self.info
puts "Second_class method info."
puts #subclasses
puts #method_names
end
def second_method
end
def initialize
puts "Instance of Second_class is created."
end
end
class Third_class < First_class
def third_method
end
def initialize
puts "Instance of Third_class is created."
end
end
end
First::First_class.subclasses.each {
|subclass| puts subclass
subclass.method_names.each {
|methodn| puts methodn
}
}
#################UPDATE#########
Ok, maybe I put the question incorrectly.
Basically what is the difference for ##method_names(class variable) and #method_names (instance variable) if i do not create the instance of object? After inserting more inputs into #method_names it still inserts into the same object_id. So what is benefit of ##method_names?
updated to answer updated question.
Classes in ruby can have class variables. However if you modify the class level variable, ALL instances will be modified. This is not recommended but will illustrate the point. But also see this answer
class Foo
##bar = 'bar'
attr_accessor :bar
def initialize
#bar = 'bar'
end
def class_bar
##bar
end
def change_class_bar string
raise ArgumentError unless string.is_a?(String)
##bar = string
end
end
a = Foo.new
b = Foo.new
# change the class variable ##bar
b.change_class_bar 'wtf?'
# see both instances are changed because objects are passed by referrence
print 'a.class_bar is: '
puts a.class_bar
print 'b.class_bar is: '
puts b.class_bar
# change one instance only
a.bar = 'only a has changed'
print 'a.bar is: '
puts a.bar
print 'b.bar is still: '
puts b.bar
run this and you should get output:
a.class_bar is: wtf?
b.class_bar is: wtf?
a.bar is: only a has changed
b.bar is still: bar
original answer left here
#method_names is an instance variable of an instance of the class from which it was instantiated. However it cannot be accessed for read/write unless those attributes are defined with getter or setter methods defined.
ff = First::First_class.new
Instance of First_class is created.
=> #<First::First_class:0x00007fde5a6867b8>
ff.method_names
NoMethodError: undefined method `method_names' for #<First::First_class:0x00007fde5a6867b8>
Did you mean? methods
Now if you call ff.methods you will see all methods defined through standard Ruby inheritance.
As a side note, class names in Ruby conventionally use PascalCase see PascalCase. Mixed_case is discouraged.
Just for fun, again, but is it possible to take a block that contains method definitions and add those to an object, somehow? The following doesn't work (I never expected it to), but just so you get the idea of what I'm playing around with.
I do know that I can reopen a class with class << existing_object and add methods that way, but is there a way for code to pass that information in a block?
I guess I'm trying to borrow a little Java thinking here.
def new(cls)
obj = cls.new
class << obj
yield
end
obj
end
class Cat
def meow
puts "Meow"
end
end
cat = new(Cat) {
def purr
puts "Prrrr..."
end
}
cat.meow
# => Meow
# Not working
cat.purr
# => Prrrr...
EDIT | Here's the working version of the above, based on edgerunner's answer:
def new(cls, &block)
obj = cls.new
obj.instance_eval(&block)
obj
end
class Cat
def meow
puts "Meow"
end
end
cat = new(Cat) {
def purr
puts "Prrrr..."
end
}
cat.meow
# => Meow
cat.purr
# => Prrrr...
You can use class_eval(also aliased as module_eval) or instance_eval to evaluate a block in the context of a class/module or an object instance respectively.
class Cat
def meow
puts "Meow"
end
end
Cat.module_eval do
def purr
puts "Purr"
end
end
kitty = Cat.new
kitty.meow #=> Meow
kitty.purr #=> Purr
kitty.instance_eval do
def purr
puts "Purrrrrrrrrr!"
end
end
kitty.purr #=> Purrrrrrrrrr!
Yes
I suspect you thought of this and were looking for some other way, but just in case...
class A
def initialize
yield self
end
end
o = A.new do |o|
class << o
def purr
puts 'purr...'
end
end
end
o.purr
=> purr...
For the record, this isn't the usual way to dynamically add a method. Typically, a dynamic method starts life as a block itself, see, for example, *Module#define_method*.
I have a test class and a box class, in the test class i have a var called boxHolder, which is an array, i want to override the << method for this array. Inside the singleton how can i access moski_call ?
class Test
attr_accessor :boxHolder
def initialize()
super
self.boxHolder = Array.new
class << #boxHolder
def <<(box)
box.setPositionWithinColumn(moski_call)
super(box)
end
end
end
def moski_call
"YAAAAAAAAAAAAAAAAAAAA"
end
end
class Box
def initialize
end
def setPositionWithinColumn(str)
puts "got a string #{str}"
end
end
# test
box = Box.new
test = Test.new
test.boxHolder
like this:
# need this or else `moski_call` method is looked up in context of #boxholder
moski_call_output = moski_call
class << #boxholder; self; end.send(:define_method, :<<) { |box|
box.setPositionWithinColumn(moski_call_output)
super(box)
}
What about:
def self.boxHolder.<< (box)
box.setPositionWithinColumn(moski_call)
super(box)
end
This would declare a method for your instance boxHolder. But boxHolder does not have access to the method moski_call
You need to maintain access to the "parent" Test object. This can be done using the fact that blocks are closures:
parent = self # to be accessible in the closure
#boxHolder.define_singleton_method(:<<) do |box|
box.setPositionWithinColumn(parent.moski_call)
super(box)
end
Note: define_singleton_method is new in Ruby 1.9, so either upgrade, require 'backports/1.9.1/kernel/define_singleton_method' or do class << #boxHolder; define_method(:<<){ "..." } end if using an older Ruby.
obj = SomeObject.new
def obj.new_method
"do some things"
end
puts obj.new_method
> "do some things"
This works ok. However, I need to do same thing inside an existing method:
def some_random_method
def obj.new_method
"do some things"
end
end
Works ok as well, but having a method inside a method looks pretty horrible. The question is, is there any alternate way of adding such a method?
In ruby 1.9+, there's a better way of doing this using define_singleton_method, as follows:
obj = SomeObject.new
obj.define_singleton_method(:new_method) do
"do some things"
end
Use a Mixin.
module AdditionalMethods
def new_method
"do some things"
end
end
obj = SomeObject.new
obj.extend(AdditionalMethods)
puts obj.new_method
> "do some things"
There are several ways to achieve this, and they are all related to the singleton class:
You can use class << idiom to open the singleton class definition:
obj = Object.new
class << obj
def my_new_method
...
end
end
Or you can use define_singleton_method on the obj:
obj = Object.new
obj.define_singleton_method(:my_new_method) do
...
end
You can also use define_method from the singleton class:
obj = Object.new
obj.singleton_class.define_method(:my_new_method) do
...
end
Or you can use def directly:
obj = Object.new
def obj.my_new_method
...
end
Pay attention to example 3, I think the concept of a singleton class becomes clearer on that one. There is a difference between these two examples:
a = Object.new
b = Object.new
# -- defining a new method in the object's "class" --
a.class.define_method(:abc) do
puts "hello abc"
end
a.abc # prints "hello abc"
b.abc # also prints "hello abc"
# -- defining a new method in the object's "singleton class" --
a.singleton_class.define_method(:bcd) do
puts "hello bcd"
end
a.bcd # prints "hello bcd"
b.bcd # error undefined method
This is because every object has its own singleton class:
a = Object.new
b = Object.new
p a.class # prints "Object"
p a.singleton_class # prints "#<Class:#<Object:0x000055ebc0b84438>>"
p b.class # also prints "Object"
p b.singleton_class # prints "#<Class:#<Object:0x000055ebc0b84410>>" (a different reference address)
Just an interesting point to note:
if you had instead gone:
def my_method
def my_other_method; end
end
Then my_other_method would actually be defined on the CLASS of the object not withstanding that the receiver ofmy_method is an instance.
However if you go (as you did):
def my_method
def self.my_other_method; end
end
Then my_other_method is defined on the eigenclass of the instance.
Not directly relevant to your question but kind of interesting nonetheless ;)
You can use modules.
module ObjSingletonMethods
def new_method
"do some things"
end
end
obj.extend ObjSingletonMethods
puts obj.new_method # => do some things
Now if you need to add more methods to that object, you just need to implement the methods in the module and you are done.
Use instance_eval:
obj = SomeObject.new
obj.instance_eval do
def new_method
puts 'do something new'
end
end
obj.new_method
> "do something new"
class Some
end
obj = Some.new
class << obj
def hello
puts 'hello'
end
end
obj.hello
obj2 = Some.new
obj2.hello # error
Syntax class << obj means that we are opening definition of the class for an object. As you probably know we can define Ruby class methods using syntax like this:
class Math
class << self
def cos(x)
...
end
def sin(x)
...
end
end
end
Then we can use those methods like this:
Math.cos(1)
In Ruby, everything is an object - even classes. self here is an object of Math class itself (you can access that object with Math.class). So syntax class << self means we are opening class for Math class object. Yes, it means that Math class has class too (Math.class.class).
Another way to use a Mixin
obj = SomeObject.new
class << obj
include AnotherModule
end
This includes all of the methods from AnotherModule into the current object.
I'm trying to make a method similar to attr_reader but I can't seem to get the instance of the class that the method gets called in.
class Module
def modifiable_reader(*symbols)
# Right here is where it returns Klass instead of #<Klass:0x1df25e0 #readable="this">
mod = self
variables = symbols.collect { |sym| ("#" << sym.to_s).to_sym }
attr_reader *symbols
(class << ModifyMethods; self; end).instance_eval do
define_method(*symbols) do
mod.instance_variable_get(*variables)
end
end
end
end
class Object
module ModifyMethods; end
def modify(&block)
ModifyMethods.instance_eval(&block)
end
end
class Klass
modifiable_reader :readable
def initialize
#readable = "this"
end
end
my_klass = Klass.new
my_klass.modify do
puts "Readable: " << readable.to_s
end
I'm not sure what it is you're trying to do.
If it helps, the spell for attr_reader is something like this:
#!/usr/bin/ruby1.8
module Kernel
def my_attr_reader(symbol)
eval <<-EOS
def #{symbol}
##{symbol}
end
EOS
end
end
class Foo
my_attr_reader :foo
def initialize
#foo = 'foo'
end
end
p Foo.new.foo # => "foo"
What I can understand from your code is that you want to have the modify block to respond to the instance methods of Klass, that's as simple as:
class Klass
attr_reader :modifiable
alias_method :modify, :instance_eval
def initialize(m)
#modifiable = m
end
end
Klass.new('john').modify do
puts 'Readable %s' % modifiable
end
About this tidbit of code:
def modifiable_reader(*symbols)
# Right here is where it returns Klass instead of #<Klass:0x1df25e0 #readable="this">
mod = self
...
Probably this can give you a hint of what is going on:
Class.superclass # => Module
Klass.instance_of?(Class) # => true
Klass = Class.new do
def hello
'hello'
end
end
Klass.new.hello # => 'hello'
When you are adding methods to the Module class, you are also adding methods to the Class class, which will add an instance method to instances of Class (in this case your class Klass), at the end this means you are adding class methods on your Klass class