Just for fun, again, but is it possible to take a block that contains method definitions and add those to an object, somehow? The following doesn't work (I never expected it to), but just so you get the idea of what I'm playing around with.
I do know that I can reopen a class with class << existing_object and add methods that way, but is there a way for code to pass that information in a block?
I guess I'm trying to borrow a little Java thinking here.
def new(cls)
obj = cls.new
class << obj
yield
end
obj
end
class Cat
def meow
puts "Meow"
end
end
cat = new(Cat) {
def purr
puts "Prrrr..."
end
}
cat.meow
# => Meow
# Not working
cat.purr
# => Prrrr...
EDIT | Here's the working version of the above, based on edgerunner's answer:
def new(cls, &block)
obj = cls.new
obj.instance_eval(&block)
obj
end
class Cat
def meow
puts "Meow"
end
end
cat = new(Cat) {
def purr
puts "Prrrr..."
end
}
cat.meow
# => Meow
cat.purr
# => Prrrr...
You can use class_eval(also aliased as module_eval) or instance_eval to evaluate a block in the context of a class/module or an object instance respectively.
class Cat
def meow
puts "Meow"
end
end
Cat.module_eval do
def purr
puts "Purr"
end
end
kitty = Cat.new
kitty.meow #=> Meow
kitty.purr #=> Purr
kitty.instance_eval do
def purr
puts "Purrrrrrrrrr!"
end
end
kitty.purr #=> Purrrrrrrrrr!
Yes
I suspect you thought of this and were looking for some other way, but just in case...
class A
def initialize
yield self
end
end
o = A.new do |o|
class << o
def purr
puts 'purr...'
end
end
end
o.purr
=> purr...
For the record, this isn't the usual way to dynamically add a method. Typically, a dynamic method starts life as a block itself, see, for example, *Module#define_method*.
Related
Sandi Metz says in SOLID OOPS concepts from GORUCO that presence of if..else blocks in Ruby can be considered to be a deviation from Open-Close Principle. What all methods can be used to avoid not-urgent if..else conditions? I tried the following code:
class Fun
def park(s=String.new)
puts s
end
def park(i=Fixnum.new)
i=i+2
end
end
and found out that function overloading does not work in Ruby. What are other methods through which the code can be made to obey OCP?
I could have simply gone for:
class Fun
def park(i)
i=i+2 if i.class==1.class
puts i if i.class=="asd".class
end
end
but this is in violation to OCP.
With your current example, and wanting to avoid type detection, I would use Ruby's capability to re-open classes to add functionality you need to Integer and String:
class Integer
def park
puts self + 2
end
end
class String
def park
puts self
end
end
This would work more cleanly when altering your own classes. But maybe it doesn't fit your conceptual model (it depends what Fun represents, and why it can take those two different classes in a single method).
An equivalent but keeping your Fun class might be:
class Fun
def park_fixnum i
puts i + 2
end
def park_string s
puts s
end
def park param
send("park_#{param.class.to_s.downcase}", param)
end
end
As an opinion, I am not sure you will gain much writing Ruby in this way. The principles you are learning may be good ones (I don't know), but applying them forcefully "against the grain" of the language may create less readable code, regardless of whether it meets a well-intentioned design.
So what I would probably do in practice is this:
class Fun
def park param
case param
when Integer
puts param + 2
when String
puts param
end
end
end
This does not meet your principles, but is idiomatic Ruby and slightly easier to read and maintain than an if block (where the conditions could be far more complex so take longer for a human to parse).
You could just create handled classes for Fun like so
class Fun
def park(obj)
#parker ||= Object.const_get("#{obj.class}Park").new(obj)
#parker.park
rescue NameError => e
raise ArgumentError, "expected String or Fixnum but recieved #{obj.class.name}"
end
end
class Park
def initialize(p)
#park = p
end
def park
#park
end
end
class FixnumPark < Park
def park
#park += 2
end
end
class StringPark < Park
end
Then things like this will work
f = Fun.new
f.park("string")
#=> "string"
f.instance_variable_get("#parker")
#=> #<StringPark:0x1e04b48 #park="string">
f = Fun.new
f.park(2)
#=> 4
f.instance_variable_get("#parker")
#=> #<FixnumPark:0x1e04b48 #park=4>
f.park(22)
#=> 6 because the instance is already loaded and 4 + 2 = 6
Fun.new.park(12.3)
#=> ArgumentError: expected String or Fixnum but received Float
You could do something like this:
class Parent
attr_reader :s
def initialize(s='')
#s = s
end
def park
puts s
end
end
class Child1 < Parent
attr_reader :x
def initialize(s, x)
super(s)
#x = x
end
def park
puts x
end
end
class Child2 < Parent
attr_reader :y
def initialize(s, y)
super(s)
#y = y
end
def park
puts y
end
end
objects = [
Parent.new('hello'),
Child1.new('goodbye', 1),
Child2.new('adios', 2),
]
objects.each do |obj|
obj.park
end
--output:--
hello
1
2
Or, maybe I overlooked one of your twists:
class Parent
attr_reader :x
def initialize(s='')
#x = s
end
def park
puts x
end
end
class Child1 < Parent
def initialize(x)
super
end
def park
x + 2
end
end
class Child2 < Parent
def initialize(x)
super
end
def park
x * 2
end
end
objects = [
Parent.new('hello'),
Child1.new(2),
Child2.new(100),
]
results = objects.map do |obj|
obj.park
end
p results
--output:--
hello
[nil, 4, 200]
And another example using blocks, which are like anonymous functions. You can pass in the desired behavior to park() as a function:
class Function
attr_reader :block
def initialize(&park)
#block = park
end
def park
raise "Not implemented"
end
end
class StringFunction < Function
def initialize(&park)
super
end
def park
block.call
end
end
class AdditionFunction < Function
def initialize(&park)
super
end
def park
block.call 1
end
end
class DogFunction < Function
class Dog
def bark
puts 'woof, woof'
end
end
def initialize(&park)
super
end
def park
block.call Dog.new
end
end
objects = [
StringFunction.new {puts 'hello'},
AdditionFunction.new {|i| i+2},
DogFunction.new {|dog| dog.bark},
]
results = objects.map do |obj|
obj.park
end
p results
--output:--
hello
woof, woof
[nil, 3, nil]
Look at the is_a? method
def park(i)
i.is_a?(Fixnum) ? (i + 2) : i
end
But even better not to check a type, but use duck typing:
def park(i)
i.respond_to?(:+) ? (i + 2) : i
end
UPD: After reading comments. Yes, both examples above don't solve the OCP problem. That is how I would do it:
class Fun
# The method doesn't know how to pluck data. But it knows a guy
# who knows the trick
def pluck(i)
return __pluck_string__(i) if i.is_a? String
__pluck_fixnum__(i) if i.is_a? Fixnum
end
private
# Every method is responsible for plucking data in some special way
# Only one cause of possible changes for each of them
def __pluck_string__(i)
puts i
end
def __pluck_fixnum__(i)
i + 2
end
end
I understand or equal to operation in ruby but can you explain what
you have done with:
Object.const_get("#{obj.class}Park").new(obj)
In ruby, something that starts with a capital letter is a constant. Here is a simpler example of how const_get() works:
class Dog
def bark
puts 'woof'
end
end
dog_class = Object.const_get("Dog")
dog_class.new.bark
--output:--
woof
Of course, you can also pass arguments to dog_class.new:
class Dog
attr_reader :name
def initialize(name)
#name = name
end
def bark
puts "#{name} says woof!"
end
end
dog_class = Object.const_get("Dog")
dog_class.new('Ralph').bark
--output:--
Ralph says woof!
And the following line is just a variation of the above:
Object.const_get("#{obj.class}Park").new(obj)
If obj = 'hello', the first portion:
Object.const_get("#{obj.class}Park")
is equivalent to:
Object.const_get("#{String}Park")
And when the String class object is interpolated into a string, it is simply converted to the string "String", giving you:
Object.const_get("StringPark")
And that line retrieves the StringPark class, giving you:
Object.const_get("StringPark")
|
V
StringPark
Then, adding the second portion of the original line gives you:
StringPark.new(obj)
And because obj = 'hello', that is equivalent to:
StringPark.new('hello')
Capice?
I have two classes (I can't combine them), each in their own file.
File number 1:
class A
def say_hi
puts "Hi"
end
end
File number 2:
class B
def say_bye
puts "bye"
end
end
I can do:
apple = A.new
apple.say_hi
Or:
baby = B.new
apple.say_bye
But what if I want to do:
apple = A.new
apple.say_bye
Or:
baby = B.new
baby.say_hi
Is there a simple way to do that without restructuring my classes?
If it's a case of "which class I should instantiate?" and all you know is you want method "say_hi" then you could do...
method = :say_hi
if A.new.respond_to?(method)
runner_object = A.new
else
runner_object = B.new
end
active support in Rails lets you do...
result = A.new.try(:say_hi) || B.new.try(:say_hi)
If I understand correctly, you need to call these different methods from a flow which gets either one of these classes.
The easiest way to do this is by using alias_method:
class A
def say_hi
puts "Hi"
end
alias_method :say, :say_hi
end
class B
def say_bye
puts "bye"
end
alias_method :say, :say_bye
end
apple = A.new
apple.say
# => "Hi"
baby = B.new
baby.say
# => "bye"
You can even do it if you can't actually change the class code, by using class_eval:
A.class_eval { alias_method :say, :say_hi }
B.class_eval { alias_method :say, :say_bye }
Heres what I have/want:
module Observable
def observers; #observers; end
def trigger(event, *args)
good = true
return good unless (#observers ||= {})[event]
#obersvers[event].each { |e| good = false and break unless e.call(self, args) }
good
end
def on(event, &block)
#obersvers ||= {}
#obersvers[event] ||= []
#observers[event] << block
end
end
class Item < Thing
include Observable
def pickup(pickuper)
return unless trigger(:before_pick_up, pickuper)
pickuper.add_to_pocket self
trigger(:after_pick_up, pickuper)
end
def drop(droper)
return unless trigger(:before_drop, droper)
droper.remove_from_pocket self
trigger(:after_drop, droper)
end
# Lots of other methods
end
# How it all should work
Item.new.on(:before_pickup) do |item, pickuper|
puts "Hey #{pickuper} thats my #{item}"
return false # The pickuper never picks up the object
end
While starting on trying to create a game in Ruby, I thought it would be great if it could be based all around Observers and Events. The problem is have to write all of these triggers seems to be a waste, as it seems like a lot of duplicated code. I feel there must be some meta programming method out there to wrap methods with functionality.
Ideal Sceanrio:
class CustomBaseObject
class << self
### Replace with correct meta magic
def public_method_called(name, *args, &block)
return unless trigger(:before_+name.to_sym, args)
yield block
trigger(:after_+name.to_sym, args)
end
###
end
end
And then I have all of my object inherit from this Class.
I'm still new to Ruby's more advanced meta programming subjects, so any knowledge about this type of thing would be awesome.
There are a several ways to do it with the help of metaprogramming magic. For example, you can define a method like this:
def override_public_methods(c)
c.instance_methods(false).each do |m|
m = m.to_sym
c.class_eval %Q{
alias #{m}_original #{m}
def #{m}(*args, &block)
puts "Foo"
result = #{m}_original(*args, &block)
puts "Bar"
result
end
}
end
end
class CustomBaseObject
def test(a, &block)
puts "Test: #{a}"
yield
end
end
override_public_methods(CustomBaseObject)
foo = CustomBaseObject.new
foo.test(2) { puts 'Block!' }
# => Foo
Test: 2
Block!
Bar
In this case, you figure out all the required methods defined in the class by using instance_methods and then override them.
Another way is to use so-called 'hook' methods:
module Overrideable
def self.included(c)
c.instance_methods(false).each do |m|
m = m.to_sym
c.class_eval %Q{
alias #{m}_original #{m}
def #{m}(*args, &block)
puts "Foo"
result = #{m}_original(*args, &block)
puts "Bar"
result
end
}
end
end
end
class CustomBaseObject
def test(a, &block)
puts "Test: #{a}"
yield
end
include Overrideable
end
The included hook, defined in this module, is called when you include that module. This requires that you include the module at the end of the class definition, because included should know about all the already defined methods. I think it's rather ugly :)
(Big edit, I got part of the way there…)
I've been hacking away and I've come up with this as a way to specify things that need to be done before attributes are read:
class Class
def attr_reader(*params)
if block_given?
params.each do |sym|
define_method(sym) do
yield
self.instance_variable_get("##{sym}")
end
end
else
params.each do |sym|
attr sym
end
end
end
end
class Test
attr_reader :normal
attr_reader(:jp,:nope) { changethings if #nope.nil? }
def initialize
#normal = "Normal"
#jp = "JP"
#done = false
end
def changethings
p "doing"
#jp = "Haha!"
#nope = "poop"
end
end
j = Test.new
p j.normal
p j.jp
But changethings isn't being recognised as a method — anyone got any ideas?
You need to evaluate the block in the context of the instance. yield by default will evaluate it in its native context.
class Class
def attr_reader(*params, &blk)
if block_given?
params.each do |sym|
define_method(sym) do
self.instance_eval(&blk)
self.instance_variable_get("##{sym}")
end
end
else
params.each do |sym|
attr sym
end
end
end
end
Here's another alternative approach you can look at. It's not as elegant as what you're trying to do using define_method but it's maybe worth looking at.
Add a new method lazy_attr_reader to Class
class Class
def lazy_attr_reader(*vars)
options = vars.last.is_a?(::Hash) ? vars.pop : {}
# get the name of the method that will populate the attribute from options
# default to 'get_things'
init_method = options[:via] || 'get_things'
vars.each do |var|
class_eval("def #{var}; #{init_method} if !defined? ##{var}; ##{var}; end")
end
end
end
Then use it like this:
class Test
lazy_attr_reader :name, :via => "name_loader"
def name_loader
#name = "Bob"
end
end
In action:
irb(main):145:0> t = Test.new
=> #<Test:0x2d6291c>
irb(main):146:0> t.name
=> "Bob"
IMHO changing the context of the block is pretty counter-intuitive, from a perspective of someone who would use such attr_reader on steroids.
Perhaps you should consider plain ol' "specify method name using optional arguments" approach:
def lazy_attr_reader(*args, params)
args.each do |e|
define_method(e) do
send(params[:init]) if params[:init] && !instance_variable_get("##{e}")
instance_variable_get("##{e}")
end
end
end
class Foo
lazy_attr_reader :foo, :bar, :init => :load
def load
#foo = 'foo'
#bar = 'bar'
end
end
f = Foo.new
puts f.bar
#=> bar
Sorry for the poor title, I don't really know what to call this.
I have something like this in Ruby:
class Test
def initialize
#my_array = []
end
attr_accessor :my_array
end
test = Test.new
test.my_array << "Hello, World!"
For the #my_array instance variable, I want to override the << operator so that I can first process whatever is being inserted to it. I've tried #my_array.<<(value) as a method in the class, but it didn't work.
I think you're looking for this:
class Test
def initialize
#myarray = []
class << #myarray
def <<(val)
puts "adding #{val}" # or whatever it is you want to do first
super(val)
end
end
end
attr_accessor :myarray
end
There's a good article about this and related topics at Understanding Ruby Singleton Classes.
I'm not sure that's actually something you can do directly.
You can try creating a derived class from Array, implementing your functionality, like:
class MyCustomArray < Array
def initialize &process_append
#process_append = &process_append
end
def << value
raise MyCustomArrayError unless #process_append.call value
super.<< value
end
end
class Test
def initialize
#my_array = MyCustomArray.new
end
attr_accessor :my_array
end
Here you go...
$ cat ra1.rb
class Aa < Array
def << a
puts 'I HAVE THE CONTROL!!'
super a
end
end
class Test
def initialize
#my_array = Aa.new
end
attr_accessor :my_array
end
test = Test.new
test.my_array << "Hello, World!"
puts test.my_array.inspect
$ ruby ra1.rb
I HAVE THE CONTROL!!
["Hello, World!"]
$
a = []
a.instance_eval("alias old_add <<; def << value; puts value; old_add(value); end")
Very hackish, and off the top of my head ...
Just change 'puts value' with whatever preprocessing you want to do.
You can extend the metaclass of any individual object, without having to create a whole new class:
>> i = []
=> []
>> class << i
>> def <<(obj)
>> puts "Adding "+obj.to_s
>> super
>> end
>> end
=> nil
>> i << "foo"
Adding foo
=> ["foo"]
i extend the class, creating a method which provides access to the instance variable.
class KeywordBid
def override_ignore_price(ignore_price)
#ignorePrice = ignore_price
end
end