I was wondering how to pass a block to a method which will make the method return on yield.
The naive aproach doesn't work:
def run(&block)
block.call
end
run { return :foo } # => LocalJumpError
Wrapping in another proc has the same effect:
def run(&block)
proc { block.call }.call
end
run { return :bar } # => LocalJumpError
So I thought that the return statement is bound to the receiver of the current binding. However, trying it out with instance_eval proved me wrong:
class ProcTest
def run(&block)
puts "run: #{[binding.local_variables, binding.receiver]}"
instance_eval(&block)
end
end
pt = ProcTest.new
binding_inspector = proc { puts "proc: #{[binding.local_variables, binding.receiver]}" }
puts "main: #{[binding.local_variables, binding.receiver]}"
# => main: [[:pt, :binding_inspector], main]
binding_inspector.call
# => proc: [[:pt, :binding_inspector], main]
pt.run(&binding_inspector)
# => run: [[:block], #<ProcTest:0x007f4987b06508>]
# => proc: [[:pt, :binding_inspector], #<ProcTest:0x007f4987b06508>]
pt.run { return :baz }
# => run: [[:block], #<ProcTest:0x007f4987b06508>]
# => LocalJumpError
So the questions are:
How can this be done?
How is the return context tied to the return statement. Is this connection accessible via the language's API?
Was this implemented in such manner intentionally? If yes - why? If no - what are the obstacles to fix it?
I thought that the return statement is bound to the receiver of the current binding.
Only methods have an receiver. return is not a method:
defined? return #=> "expression"
Trying to invoke it as a method doesn't work:
def foo
send(:return, 123)
end
foo #=> undefined method `return'
trying it out with instance_eval proved me wrong
Though instance_eval evaluates the block in the context of the receiver (so you have access to the receivers instance methods and instance variables):
class MyClass
def foo(&block)
#var = 123
instance_eval(&block)
end
end
MyClass.new.foo { instance_variables }
#=> [:#var]
... it does not evaluate the block in the current binding (so you don't have access to any local variables):
class MyClass
def foo(&block)
var = 123
instance_eval(&block)
end
end
MyClass.new.foo { local_variables }
#=> []
How can this be done?
You could use eval, but that requires a string:
def foo
var = 123
eval yield
nil
end
foo { "return var * 2" }
#=> 246
Or by passing the binding to the block (again using eval):
def foo
var = 123
yield binding
nil
end
foo { |b| b.eval "return var * 2" }
#=> 246
return in a block returns from the enclosing method when the block is defined (ie, the closure in which the block is created). In your example, there is no enclosing block to return from, hence your exception.
This is easily demonstrated:
def foo(&block)
puts yield
puts "we won't get here"
end
def bar
foo { return "hi from the block"; puts "we never get here" }
puts "we never get here either"
end
puts bar # => "hi from the block" (only printed once; the puts in `foo` is not executed)
Return in a proc will immediately return out of the proc, not out of the method on the stack under the proc:
def foo(&block)
puts yield
puts "we will get here"
end
def bar
foo &->{ return "hi from the proc"; puts "we never get here" }
puts "we will get here too"
end
puts bar
# hi from the proc # puts from foo
# we will get here # puts from foo
# we will get here too # puts from bar
Because of these behaviors, there is no way to achieve your desired behavior, in which a return in the given block will execute a return in the method from which the block is invoked, unless the block was defined within that scope, since doing so would require one of the existing behaviors not work.
You could achieve something like this with throw...catch, which is kinda-sorta useful as a way to zip up the stack from an arbitrary depth, but you can't return arbitrary values with it:
def foo(&block)
yield
puts "we won't get here"
end
catch(:escape) do
foo &->{ throw :escape }
end
Related
I'm currently working on an interface that allows me to wrap arbitrary method calls with a chain of procs. Without going into too much detail, I currently have an interface that accepts something like this:
class Spy
def initialize
#procs = []
end
def wrap(&block)
#procs << block
end
def execute
original_proc = Proc.new { call_original }
#procs.reduce(original_proc) do |memo, p|
Proc.new { p.call &memo }
end.call
end
def call_original
puts 'in the middle'
end
end
spy = Spy.new
spy.wrap do |&block|
puts 'hello'
block.call
end
spy.wrap do |&block|
block.call
puts 'goodbye'
end
spy.execute
What I'd like to do though is remove the |&block| and block.call from my API and use yield instead.
spy.wrap do
puts 'hello'
yield
end
This didn't work and raised a LocalJumpError: no block given (yield) error.
I've also tried creating methods by passing the proc the define_singleton_method in the reduce, but I haven't had any luck.
def execute
original_proc = Proc.new { call_original }
#procs.reduce(original_proc) do |memo, p|
define_singleton_method :hello, &p
Proc.new { singleton_method(:hello).call(&memo) }
end.call
end
Is there another approach I can use? Is there anyway to yield from a Proc or use the Proc to initialize something that can be yielded to?
Using yield in your wrap block does not make much sense unless you passed a block to the caller itself:
def foo
spy.wrap do
puts "executed in wrap from foo"
yield
end
end
If you call foo without a block it will raise the exception since yield can't find a block to execute. But if you pass a block to foo method then it will be invoked:
foo do
puts "foo block"
end
Will output
executed in wrap from foo
foo block
In conclusion I think you misunderstood how yield works and I don't think it is what you want to achieve here.
There is a pretty good documentation of the current implementation of refinements in ruby here:
http://ruby-doc.org//core-2.2.0/doc/syntax/refinements_rdoc.html,
but there are some strange corner cases.
First, include module is orthogonal to using module (one include the instance method of module while the other activates the refinement). But there is a trick to include a refinement module itself, see
Better way to turn a ruby class into a module than using refinements?.
def to_module(klass)
Module.new do
#note that we return the refinement module itself here
return refine(klass) {
yield if block_given?
}
end
end
class Base
def foo
"foo"
end
end
class Receiver
include to_module(Base) {
def foo
"refined " + super
end
}
end
Receiver.new.foo #=> "refined foo"
Strangely this refinement module can't be used with using!
m=to_module(Base) {}
m.class #=> Module
using m
#=>TypeError: wrong argument type Class (expected Module)
So using only work on the enclosing module of the refinement modules.
Secondly I wanted to use the above yield trick to be able to pass a Proc to refine (even through it only accepts a block), without resorting to converting the Proc back to source as in
https://www.new-bamboo.co.uk/blog/2014/02/05/refinements-under-the-knife/.
But using yield as in the include example does not work:
def ref_module1(klass)
Module.new do
refine(klass) {
yield
}
end
end
class Receiver1
using ref_module1(Base) {
def foo
"refined " + super
end
}
def bar
Base.new.foo
end
end
Receiver1.new.bar #=> NoMethodError: super: no superclass method `foo'
We see that Receiver1 still use Bar#foo and not the refined method.
Howewer we can use module_eval instead:
def ref_module2(klass,&b)
Module.new do
refine(klass) {
module_eval(&b)
}
end
end
class Receiver2
using ref_module2(Base) {
def foo
"refined " + super
end
}
def bar
Base.new.foo
end
end
Receiver2.new.bar #=> "refined foo"
I don't quite understand why module_eval works here and not the yield method. Inside the refinement block, the 'default_definee' is the refinement module, so module_eval which puts the 'default_definee' to self='the refinement module' should not affect it. And indeed in the 'include' example at the beginning, I get the same result when I use module_eval or a direct yield.
Can anyone explain this behavior?
Context (or binding) is the reason why module_eval works and yield doesn't in your last set of examples. It actually has nothing to do with refinements, as demonstrated below.
Starting with module_eval:
class Foo
def run(&block)
self.class.module_eval(&block)
end
end
foo = Foo.new
foo.run {
def hello
"hello"
end
}
puts foo.hello # => "hello"
puts hello => # '<main>': undefined method 'hello' for main:Object (NameError)
In Foo#run we call module_eval on Foo. This switches the context (self) to be Foo. The result is much like we had simple defined hello inside of class Foo originally.
Now let's take a look at yield:
class Foo
def run
yield
end
end
foo = Foo.new
foo.run {
def hello
"hello"
end
}
puts hello # => "hello"
puts foo.hello # => '<main>': private method 'hello' called for ...
yield simply invokes the block in its original context, which in this example would be <main>. When the block is invoked, the end result is exactly the same as if the method were defined at the top level normally:
class Foo
def run
yield
end
end
foo = Foo.new
def hello
"hello"
end
puts hello # => "hello"
puts foo.hello # => '<main>': private method 'hello' called for ...
You might notice that foo seems to have the hello method in the yield examples. This is a side effect of defining hello as a method at the top level. It turns out that <main> is just an instance of Object, and defining top level methods is really just defining private methods on Object which nearly everything else ends up inheriting. You can see this by opening up irb and running the following:
self # => main
self.class # => Object
def some_method
end
"string".method(:some_method) # => #<Method: String(Object)#some_method>
Now back to your examples.
Here's what happens in the yield example:
def ref_module1(klass)
Module.new do
refine(klass) {
yield
}
end
end
class Receiver1
# like my yield example, this block is going to
# end up being invoked in its original context
using ref_module1(Base) {
def foo
"I'm defined on Receiver1"
end
}
def bar
# calling foo here will simply call the original
# Base#foo method
Base.new.foo
end
end
# as expected, if we call Receiver1#bar
# we get the original Base#foo method
Receiver1.new.bar # => "foo"
# since the block is executed in its original context
# the method gets defined in Receiver1 -- its original context
Receiver1.new.foo # => "I'm defined on Receiver1"
As for module_eval, it works in your examples because it causes the block to be run in the context of the new module, rather than on the Receiver1 class.
According to the documentation for modules and classes, calling super (without arguments or parentheses) calls the parent method with the same arguments:
When used without any arguments super uses the arguments given to the subclass method.
Assigning a new value to the "argument variable" seems to alter this behavior:
class MyClass
def foo(arg)
puts "MyClass#foo(#{arg.inspect})"
end
end
class MySubclass < MyClass
def foo(arg)
puts "MySubclass#foo(#{arg.inspect})"
super
arg = 'new value'
super
end
end
MySubclass.new.foo('inital value')
Output:
MySubclass#foo("inital value")
MyClass#foo("inital value")
MyClass#foo("new value") # <- not the argument given to MySubclass#foo
Is this expected?
Update
This seems to be the expected behavior for positional and keyword arguments, but it doesn't work for block arguments:
class MyClass
def foo(&block)
puts "MyClass#foo { #{block.call.inspect} }"
end
end
class MySubclass < MyClass
def foo(&block)
puts "MySubclass#foo { #{block.call.inspect} }"
super
block = Proc.new { 'new value' }
super
end
end
MySubclass.new.foo { 'initial value' }
Output:
MySubclass#foo { "initial value" }
MyClass#foo { "initial value" }
MyClass#foo { "initial value" }
Lets take one example from the Ruby core:
Keyword2
class Base
def single(a) a end
def double(a, b) [a,b] end
def array(*a) a end
def optional(a = 0) a end
def keyword(**a) a end
end
class Keyword2 < Base
def keyword(foo: "keyword2")
foo = "changed1"
x = super
foo = "changed2"
y = super
[x, y]
end
end
Now, see the test case :-
def test_keyword2
assert_equal([{foo: "changed1"}, {foo: "changed2"}], Keyword2.new.keyword)
end
Above example exactly mathes the keyword documentation.
Called with no arguments and no empty argument list, super calls the appropriate method with the same arguments, and the same code block, as those used to call the current method. Called with an argument list or arguments, it calls the appropriate methods with exactly the specified arguments (including none, in the case of an empty argument list indicated by empty parentheses).
same arguments means it is saying the current values of argument variables.test_super.rb files contains all the varieties of stuffs we can do with super in Ruby.
No, it work with block too (taken from core) :
a = Class.new do
def foo
yield
end
end
b = Class.new(a) do
def foo
super{
"b"
}
end
end
b.new.foo{"c"} # => "b"
But, have no idea why the below is giving "c"? This is actually the updated question of the OP:
c = Class.new do
def foo(&block)
block.call
end
end
d = Class.new(c) do
def foo(&block)
block = -> { "b" }
super
end
end
d.new.foo{"c"} # => "c"
It seems to be the expected behavior, based on the RubySpec anyway.
module RestArgsWithSuper
class A
def a(*args)
args
end
end
class B < A
def a(*args)
args << "foo"
super
end
end
end
(language/fixtures/super.rb).
It's then expected that the arguments are modified:
it "passes along modified rest args when they weren't originally empty" do
Super::RestArgsWithSuper::B.new.a("bar").should == ["bar", "foo"]
end
(language/super_spec.rb)
It's the expected behaviour. Technically, arg is the same argument, it just points to another value.
This answer might explain it better: https://stackoverflow.com/a/1872159/163640
I can't figure out how to assign a function call to a ruby hash.
What I want to do is to assign a function to a hash key, and later
call this function using the classic hash lookout syntax.
def Foo()
puts "bar"
end
puts "Assigning"
test = { "foo" => Foo() }
puts "Executing"
test["foo"]
This code fails, function Foo is called after puts "Assign", during hash creation, and nothing happens after puts "Executing"
def Foo()
puts "bar"
end
puts "Assigning"
test = { "foo" => Foo }
puts "Executing"
test["foo"]
with this code I receive an uninitialized constant Foo (NameError).
Finally with
def Foo()
puts "bar"
end
puts "Assigning"
test = { "foo" => :Foo }
puts "Executing"
test["foo"]
I get not outputs.
Any suggestions?
Thanks to all for answres and suggestions.
What I'm going to do is to test
if a hash based approach to call function is faster than
an equivalent code based on if / case statements.
funcs["foo"].call
fatser than
if func_name == "foo" then
Foo()
elsif ...
...
end
or
case func_name
when "foo"
Foo()
when ...
...
end
Obviously for a big number of functions (~150) and hundreds of
calling cycles
you could use lambda's instead of methods. Two options here:
hash = {:foo => lambda { puts 'bar } }
hash[:foo].call
the second (more complicated) is this:
irb(main):001:0> class Hash
irb(main):002:1> alias :orig_anc :'[]'
irb(main):003:1>
irb(main):004:1* def [](key)
irb(main):005:2> if orig_anc(key).is_a? Proc
irb(main):006:3> orig_anc(key).call
irb(main):007:3> else
irb(main):008:3* orig_anc(key)
irb(main):009:3> end
irb(main):010:2> end
irb(main):011:1> end
=> nil
irb(main):012:0> h = {:hello => 'world', :foo => lambda { puts 'bar' }}
=> {:hello=>"world", :foo=>#<Proc:0x843224c#(irb):12 (lambda)>}
irb(main):013:0> h[:hello]
=> "world"
irb(main):014:0> h[:foo]
bar
=> nil
irb(main):015:0>
The second one just allows you to skip using 'call' method
There is no easy possibility to make your function execute simply by retrieving the hash key withput overriding Hash's [] method, as Vlad pointed out, i.e.
def foo
puts "hi"
end
... # magic
test["foo"] # outputs hi
won't work. What you can do, though, is assign the method reference using Object#method and then invoke it using call:
def foo
puts "hi"
end
test = { "foo" => method(:foo) }
test["foo"].call # => hi
First things first, start method names with lower case letters. Then, moving to first example, Ruby is eager so test = { "foo" => Foo() } Foo is called.
In the second example, variables starting with an uppercase letter are considered constants, so Ruby looks for one and do not bother looking for a method. Take into account that if foo where a method then foo would be called as in the first example.
Third example: test["foo"] returns :Foo, a symbol. Nowhere in your code Foo() is invoked.
*Suggestions
1.- Take a look at identifiers nomenclature in Ruby.
2.- You may took a look at lambda, Proc and Object#method
3.- If you have some money to spare and don't mind buying a pair of books, give Programming Ruby and Metaprogramming in Ruby a chance (both can be bought in PragProg.
You could try using the hash constructor with a block, so
def foo
puts "hi"
end
test = Hash.new do |hash, key|
send(key) if respond_to?(key)
end
test["foo"] # prints "hi", returns nil
In Ruby, is there a way to redefine a method of a particular instance of a class using a proc? For example:
class Foo
def bar()
return "hello"
end
end
x = Foo.new
y = Foo.new
(Something like):
y.method(:bar) = lambda { return "goodbye" }
x.bar
y.bar
Producing:
hello
goodbye
Thanks.
def define_singleton_method_by_proc(obj, name, block)
metaclass = class << obj; self; end
metaclass.send(:define_method, name, block)
end
p = proc { "foobar!" }
define_singleton_method_by_proc(y, :bar, p)
or, if you want to monkey-patch Object to make it easy
class Object
# note that this method is already defined in Ruby 1.9
def define_singleton_method(name, callable = nil, &block)
block ||= callable
metaclass = class << self; self; end
metaclass.send(:define_method, name, block)
end
end
p = proc { "foobar!" }
y.define_singleton_method(:bar, p)
#or
y.define_singleton_method(:bar) do
"foobar!"
end
or, if you want to define your proc inline, this may be more readable
class << y
define_method(:bar, proc { "foobar!" })
end
or,
class << y
define_method(:bar) { "foobar!" }
end
this is the most readable, but probably doesn't fit your needs
def y.bar
"goodbye"
end
This question is highly related
I'm not sure what version of Ruby this was added in (at least 1.8.7), but there seems to be an even simpler way of doing this:
str1 = "Hello"
str2 = "Goodbye"
def str1.to_spanish
"Hola"
end
puts str1 # => Hello
puts str1.to_spanish # => Hola
puts str2 # => Goodbye
puts str2.to_spanish # => Throws a NoMethodError
Learnt about this whilst reading the Ruby Koans (about_class_methods.rb lesson).
I'm still not entirely sure what the purpose of this is since it seems a bit dangerous to me.
You can use the syntax class <<object to get an object's "singleton class" (that's a special parent class belonging only to that object) and define methods only for that instance. For example:
str1 = "Hello"
str2 = "Foo"
class <<str1
def to_spanish
'Hola'
end
end
Now if you do str1.to_spanish, it will return "Hola", but str2.to_spanish will give you a NoMethodFound exception.