Formally verifying the correctness of an algorithm - algorithm

First of all, is this only possible on algorithms which have no side effects?
Secondly, where could I learn about this process, any good books, articles, etc?

COQ is a proof assistant that produces correct ocaml output. It's pretty complicated though. I never got around to looking at it, but my coworker started and then stopped using it after two months. It was mostly because he wanted to get things done quicker, but if you need to verify an algorithm this might be a good idea.
Here is a course that uses COQ and talks about proving algorithms.
And here is a tutorial about writing academic papers in COQ.

It's generally a lot easier to verify/prove correctness when no side effects are involved, but it's not an absolute requirement.
You might want to look at some of the documentation for a formal specification language like Z. A formal specification isn't a proof itself, but is often the basis for one.

I think that verifying the correctness of an algorithm would be validating its conformance with a specification. There is a branch of theoretical Computer Science called Formal Methods which may be what you are looking for if you need to get as close to proof as you can. From wikipedia,
Formal Methods are a particular kind
of mathematically-based techniques for
the specification, development and
verification of software and hardware
systems
You will be able to find many learning resources and tools from the multitude of links on the linked Wikipedia page and from the Formal Methods wiki.

Usually proofs of correctness are very specific to the algorithm at hand.
However, there are several well known tricks that are used and re-used again. For example, with recursive algorithms you can use loop invariants.
Another common trick is reducing the original problem to a problem for which your algorithm's proof of correctness is easier to show, then either generalizing the easier problem or showing that the easier problem can be translated to a solution to the original problem. Here is a description.
If you have a particular algorithm in mind, you may do better in asking how to construct a proof for that algorithm rather than a general answer.

Buy these books: http://www.amazon.com/Science-Programming-Monographs-Computer/dp/0387964800
The Gries book, Scientific Programming is great stuff. Patient, thorough, complete.

Logic in Computer Science, by Huth and Ryan, gives a reasonably readable overview of modern systems for verifying systems. Once upon a time people talked about proving programs correct - with programming languages which may or may not have side effects. The impression I get from this book and elsewhere is that real applications are different - for instance proving that a protocol is correct, or that a chip's floating point unit can divide correctly, or that a lock-free routine for manipulating linked lists is correct.
ACM Computing Surveys Vol 41 Issue 4 (October 2009) is a special issue on software verification. It looks like you can get to at least one of the papers without an ACM account by searching for "Formal Methods: Practice and Experience".

The tool Frama-C, for which Elazar suggests a demo video in the comments, gives you a specification language, ACSL, for writing function contracts and various analyzers for verifying that a C function satisfies its contract and safety properties such as the absence of run-time errors.
An extended tutorial, ACSL by example, shows examples of actual C algorithms being specified and verified, and separates the side-effect-free functions from the effectful ones (the side-effect-free ones are considered easier and come first in the tutorial). This document is also interesting in that it was not written by the designers of the tools it describe, so it gives a fresher and more didactic look at these techniques.

If you are familiar with LISP then you should definitely check out ACL2: http://www.cs.utexas.edu/~moore/acl2/acl2-doc.html

Dijkstra's Discipline of Programming and his EWDs lay the foundation for formal verification as a science in programming. A simpler work is Wirth's Systematic Programming, which begins with the simple approach to using verification. Wirth uses pre-ISO Pascal for the language; Dijkstra uses an Algol-68-like formalism called Guarded (GCL). Formal verification has matured since Dijkstra and Hoare, but these older texts may still be a good starting point.

PVS tool developed by Stanford guys is a specification and verification system. I worked on it and found it very useful for Theoram Proving.

WRT (1), you will probably have to create a model of the algorithm in a way that "captures" the side-effects of the algorithm in a program variable intended to model such state-based side-effects.

Related

Learning efficient algorithms

Up until now I've mostly concentrated on how to properly design code, make it as readable as possible and as maintainable as possible. So I alway chose to learn about the higher level details of programming, such as class interactions, API design, etc.
Algorithms I never really found particularly interesting. As a result, even though I can come up with a good design for my programs, and even if I can come up with a solution to a given problem it rarely is the most efficient.
Is there a particular way of thinking about problems that helps you come up with an as efficient solution as possible, or is it simple a matter of practice and/or memorizing?
Also, what online resources can you recommend that teach you various efficient algorithms for different problems?
Data dominates. If you design your program around the right abstract data structures (ADTs), you often get a clean design, the algorithms follow quite naturally and when performance is lacking, you should be able to "plug in" more efficient ones.
A strong background in maths and logic helps here, as it allows you to visualize your program at a high level as the interaction between functions, sets, graphs, sequences, etc. You then decide whether the sets need to be ordered (balanced BST, O(lg n) operations) or not (hash tables, O(1) operations), what operations need to supported on sequences (vector-like or list-like), etc.
If you want to learn some algorithms, get a good book such as Cormen et al. and try to implement the main data structures:
binary search trees
generic binary search trees (that work on more than just int or strings)
hash tables
priority queues/heaps
dynamic arrays
Introduction To Algorithms is a great book to get you thinking about efficiency of different algorithms/data structures.
The authors of the book also teach an algorithms course on MIT . You can find most lectures here
I would say that in coming up with good algorithms (which is actually part of good design IMHO), you have to develop a way of thinking. This is best done by studying algorithm design. By study I don't mean just knowing all the common algorithms covered in a textbook, but actually understanding how and why they work, and being able to apply the basic idea contained in them to actual problems you are trying to solve.
I would suggest reading a good book on algorithms (my favourite is CLRS). For an online resource I would recommend the series of articles in the TopCoder Algorithm Tutorials.
I do not understand why you would mention practice and memorization in the same breath. Memorization won't help you at all (you probably already know this), but practice is essential. If you cannot apply what you learned, its not really learning. You can practice at various online programming contest/puzzle sites like SPOJ, Project Euler and PythonChallenge.
Recommendations:
First of all i recommend the book "Intro to Algorithms, Second Edition By corman", great book has most(if not all) of the algorithms you will need. (Some of the more important topics are sorting-algorithms, shortest paths, dynamic programing, many data structures like bst, hash maps, heaps).
another great way to learn algorithms is http://ace.delos.com/usacogate, great practice after the begining.
To your questions you will just get used to write good fast running code, after a little practice you just wouldnt want to write un-efficient code.
While I think #larsmans is correct inasmuch that understanding logic and maths is a fast way to understanding how to choose useful ADTs for solving a given problem, studying existing solutions may be more instructive for those of us who struggle with those topics. In particular, reviewing code of established software (OSS) that solves some similar problem as the one you're interested in.
I find a particularly good method for this method of study is reviewing unit tests of such a project. Apache Lucene, for example, has a source control repository containing numerous examples. While it doesn't reveal the underlying algorithms, it helps trace to particular functionality that solves a certain problem. This leads to an opportunity for studying its innards - i.e. an interesting algorithm. In Lucene's case inverted indices come to mind.
While this does not guarantee the algorithm you discover is the best, it's likely one that's received a lot scrutiny and probably comes from project with an active mailing that may answer your questions. So it's a good resource for finding a solution that is probably better than what most of us would come up with on our own.

pseudo code - formal rules

Has anyone set out a proposal for a formal pseudo code standard?
Is it better to be a 'rough' standard to infer an understanding?
It is better to be a rough standard; the intent of pseudocode is to be human-readable, not machine-readable, and the goal of actually writing pseudocode is to convey a higher-level description of an algorithm while being unconcerned (typically) with the minutiae of the implementation. My opinion is that for it to qualify as pseudocode there has to be some ambiguity, and your goal should be a clear conveyance of your algorithmic intentions. Stick to common control structures, declarations and concepts that are paradigmatic to your target audience or language and you'll get the point across. If you start getting too formal, you're getting too close to writing actual code.
NOT AN ANSWER.
IMHO forcing a standard (pseudo code syntax, if you will) will cause people to be less clear on what they want to say.
Browse around, try to gather some knowledge about used conventions, and do your best to be clear.
Although this is by no means a formal proposal, Python is considered by some to be Executable Pseudocode.
in my opinion it depends on the people who are using your programs. In books for algorithms the pseudo code is very formal an near to maths, but is also described in a few paragraphs, so this is for scientific situations.
If I develop in others environments I would prefer a not that formal way because that is easier to understand for most people. I prefer spoken words over formalism. If you want formalism you could read the code instead.

Logic for software verification

I'm looking at the requirements for automated software verification, i.e. a program that takes in code (ordinary procedural code written in languages like C and Java), generates a bunch of theorems saying that each loop must eventually halt, no assertion will be violated, there will never be a dereference of a null pointer etc., then passes same to a theorem prover to prove they are actually true (or else find a counterexample indicating a bug in the code).
The question is what kind of logic to use. The two major positions seem to be:
First-order logic is just fine.
First-order logic isn't expressive enough, you need higher order logic.
Problem is, there seems to be a lot of support for both positions. So which one is right? If it's the second one, are there any available examples of things you want to do, that verifiers based on first-order logic have trouble with?
You can do everything you need in FOL, but it's a lot of extra work - a LOT! Most existing systems were developed by academics / people with not a lot of time, so they are tempted to take short cuts to save time / effort, and thus are attracted to HOLs, functional languages, etc. However, if you want to build a system that is to be used by hundreds of thousands of people, rather than merely hundreds, we believe that FOL is the way to go because it is far more accessible to a wider audience. There's just no substitute for doing the work; we've been at this for 25 years now! Please take a look at our project (http://www.manmademinions.com)
Regards, Aaron.
In my practical experience, it seems to be "1. First-order logic is just fine". For examples of complete specifications for various functions written entirely in a specification language based on first-order logic, see for instance ACSL by Example or this case study.
First-order logic has automated provers (not proof assistants) that have been refined over the years to handle well properties that come from program verification. Notable automated provers for these uses are for instance Simplify, Z3, and Alt-ergo. If these provers fail and there is no obvious lemma/assertion you can add to help them, you still have the recourse of starting up a proof assistant for the difficult proof obligations. If you use HOL on the other hand, you cannot use Simplify, Z3 or Alt-ergo at all, and while I have heard of automated provers for high-order logic, I have never heard them praised for their efficiency when it comes to properties from programs.
We've found that FOL is fine for most verification conditions, but higher order logic is invaluable for a small number, for example for proving properties about summation of the elements in a collection. So our theorem prover (used in Perfect Developer and Escher C Verifier) is basically first order, but with the ability to do some higher order reasoning as well.

Can any algorithmic puzzle be implemented in a purely functional way?

I've been contemplating programming language designs, and from the definition of Declarative Programming on Wikipedia:
This is in contrast from imperative programming, which requires a detailed description of the algorithm to be run.
and further down:
... Any style of programming that is not imperative. ...
It then goes on to express that functional languages, because they are not imperative, are declarative by their very nature.
However, this makes me wonder, are purely functional programming languages able to solve any algorithmic problem, or are the constraints based upon what functions are available in that language?
I'm mostly interested in general thoughts on the subject, although if specific examples can illustrate the point, I certainly welcome them.
According to the Church-Turing Thesis ,
the three computational processes (recursion, λ-calculus, and Turing machine) were shown to be equivalent"
where Turing machine can be read as "procedural" and lambda calculus as "functional".
Yes, Haskell, Erlang, etc. are Turing complete languages. In principle, you don't need mutable state to solve a problem, since you can always create a new object instead of mutating the old one. Of course, Brainfuck is also Turing complete. In other words, just because an algorithm can be expressed in a functional language doesn't mean it's not horribly awkward.
OK, so Church and Turing provied it is possible, but how do we actually do something?
Rewriting imperative code in pure functional style is an exercise I frequently assign to undergraduate students:
Each mutable variable becomes a function parameter
Loops are rewritten using recursion
Each goto is expressed as a function call with arguments
Sometimes what comes out is a mess, but often the results are surprisingly elegant. The only real trick is not to pass arguments that never change, but instead to let-bind them in the outer environment.
The big difference with functional style programming is that it avoids mutable state. Where imperative programming will typically update variables, functional programming will define new, read-only values.
The main place where this will hit performance is with algorithms that use updatable arrays. An imperative implementation can update an array element in O(1) time, while the best a purely functional style of implementation can achieve is O(log N) (using a sorted tree).
Note that functional languages generally have some way to use updateable arrays with O(1) access time (e.g., Haskell provides this with its state transformer monad). However, this is arguably an imperative programming method... nothing wrong with that; you want to use the best tools for a particular job, after all.
The functional style of O(log N) incremental array update is not all bad, though, as functional style algorithms seem to lend themselves well to parallellization.
Too long to be posted as a comment on #SteveB's answer.
Functional programming and imperative programming have equal capability: whatever one can do, the other can do. They are said to be Turing complete. The functions that a Turing machine can compute are exactly the ones that recursive function theory and λ-calculus express.
But the Church-Turing Thesis, as such, is irrelevant. It asserts that any computation can be carried out by a Turing machine. This relates an informal idea - computation - to a formal one - the Turing machine. Nobody has yet found anything we would recognise as computation that a Turing machine can't do. Will someone find such a thing in future? Who can tell.
Using state monads you can program in an imperative style in Haskell.
So the assertion that Haskell is declarative by its very nature needs to be taken with a grain of salt. On the positive side it then is equivalent to imperative programming languages, also in a practical sense which doesn't completely ignore efficiency.
While I completely agree with the answer that invokes Church-Turing thesis, this begs an interesting question actually. If I have a parallel computation problem (which is not algorithmic in a strict mathematical sense), such as multiple producer/consumer queue or some network protocol between several machines, can this be adequately modeled by Turing machine? It can be simulated, but if we simulate it, we lose the purpose why we have the parallelism in the problem (because then we can find simpler algorithm on the Turing machine). So what if we were not to lose parallelism inherent to the problem (and thus the reason why are we interested in it), we couldn't remove the notion of state?
I remember reading somewhere that there are problems which are provably harder when solved in a purely functional manner, but I can't seem to find the reference.
As noted above, the primary problem is array updates. While the compiler may use a mutable array under the hood in some conditions, it must be guaranteed that only one reference to the array exists in the entire program.
Not only is this a hard mathematical fact, it is also a problem in practice, if you don't use impure constructs.
On a more subjective note, stating that all Turing complete languages are equivalent is only true in a narrow mathematical sense. Paul Graham explores the issue in Beating the Averages in the section "The Blub Paradox."
Formal results such as Turing-completeness may be provably correct, but they are not necessarily useful. The travelling salesman problem may be NP-complete, and yet salesman travel all the time. It seems they don't feel the need to follow an "optimal" path, so the theorem is irrelevant.
NOTE: I am not trying to bash functional programming, since I really like it. It is just important to remember that it is not a panacea.

Real world implementations of "classical algorithms"

I wonder how many of you have implemented one of computer science's "classical algorithms" like Dijkstra's algorithm or data structures (e.g. binary search trees) in a real world, not academic project?
Is there a benefit to our dayjobs in knowing these algorithms and data structures when there are tons of libraries, frameworks and APIs which give you the same functionality?
Is there a benefit to our dayjobs in knowing these algorithms and data structures when there are tons of libraries, frameworks and APIs which give you the same functionality?
The library doesn't know what your problem domain is and won't be able to chose the correct algorithm to do the job. That is why I think it is important to know about them: then YOU can make the correct choice of algorithms to solve YOUR problem.
Knowing, or being able to understand these algorithms is important, these are the tools of your trade. It does not mean you have to be able to implement A* in an hour from memory. But you should be able to figure out what the advantages of using a red-black tree as opposed to a normal unbalanced tree are so you can decide if you need it or not. You need to be able to judge the fitness of an algorithm for solving your problem.
This might sound too school-masterish but these "classical algorithms" were not invented to give college students exam questions, they were invented to solve problems or improve on current solutions, just like the array, the linked list or the stack are building blocks to write a program so are some of these. Just like in math where you move from addition and subtraction to integration and differentiation, these are advanced techniques that will help you solve problems that are out there.
They might not be directly applicable to your problems or work situation but in the long run knowing of them will help you as a professional software engineer.
To answer your question, I did an implementation of A* recently for a game.
Is there a benefit to understanding your tools, rather than simply knowing that they exist?
Yes, of course there is. Taking a trivial example, don't you think there's a benefit to knowing what the difference is List (or your language's equivalent dynamic array implementation) and LinkedList (or your language's equivalent)? It's pretty important to know that one has constant random access time, while the other is linear. And one requires N copies if you insert a value in the middle of the sequence, while the other can do it in constant time.
Don't you think there's an advantage to understanding that the same sorting algorithm isn't always optimal? That for almost-sorted data, quicksort sucks, for example? Naively just calling Sort() and hoping for the best can become ridiculously expensive if you don't understand what's happening under the hood.
Of course there are a lot of algorithms you probably won't need, but even so, just understanding how they work may make it easier for yourself to come up with efficient algorithms to solve other, unrelated, problems.
Well, someone has to write the libraries. While working at a mapping software company, I implemented Dijkstra's, as well as binary search trees, b-trees, n-ary trees, bk-trees and hidden markov models.
Besides, if all you want is a single 'well known' algorithm, and you also want the freedom to specialise it and optimise it if it becomes critical to performance, including a whole library seems like a poor choice.
We use a home grown implementation of a p-random number generator from Knuth SemiNumeric as an aid in some statistical processing
In my previous workplace, which was an EDA company, we implemented versions of Prim and Dijsktra's algorithms, disjoint set data structures, A* search and more. All of these had real world significance. I believe this is dependent on problem domain - some domains are more algorithm-intensive and some less so.
Having said that, there is a fine line to walk - I see no business reason for re-implementing STL or Java Generics. In many cases, a standard library is better than "inventing a wheel". The more you are near your core application, the more it may be necessary to implement a textbook algorithm or data structure.
If you never work with performance-critical code, consider yourself lucky. However, I consider this scenario unrealistic. Performance problems could occur anywhere. And then it's necessary to know how to fix that problem. Obviously, merely knowing a few algorithm names isn't enough here – unless you want to implement them all and try them out one after the other.
No, knowing (at least some of) the inner workings of different algorithms is important for gauging their strengths and weaknesses and for analyzing how they would handle your situation.
Obviously, if there's a library already implementing exactly what you need, you're incredibly lucky. But let's face it, even if there is such a library, using it is often not completely straightforward (at the very least, interfaces and data representation often have to be adapted) so it's still good to know what to expect.
A* for a pac man clone. It took me weeks to really get but to this day I consider it a thing of beauty.
I've had to implement some of the classical algorithms from numerical analysis. It was easier to write my own than to connect to an existing library. Also, I've had to write variations on classical algorithms because the textbook case didn't fit my application.
For classical data structures, I nearly always use the standard libraries, such as STL for C++. The one time recently when I thought STL didn't have the structure I needed (a heap) I rolled my own, only to have someone point out almost immediately that I didn't need to do that.
Classical algorithms I have used in actual work:
A topological sort
A red-black tree (although I will
confess that I only had to implement
insertions for that application and
it only got used in a prototype).
This got used to implement an
'ordered dict' type structure in
Python.
A priority queue
State machines of various sorts
Probably one or two others I can't remember.
As to the second part of the question:
An understanding of how the algorithms work, their complexity and semantics gets used on a fairly regular basis. They also inform the design of systems. Occasionally one has to do things involving parsing or protocol handling, or some computation that's slightly clever. Having a working knowledge of what the algorithms do, how they work, how expensive they are and where one might find them lying around in library code goes a long way to knowing how to avoid reinventing the wheel poorly.
I use the Levenshtein distance algorithm to help implement a 'Did you mean [suggested word]?' feature in our website search.
Works quite well when combined with our 'tagging' system, which allows us to associate extra words (other than those in title/description/etc) with items in the database. \
It's not perfect by any means, but it's way better than most corporate site searches, if I don't say so myself ; )
Classical algorithms are usually associated with something glamorous, like games, or Web search, or scientific computation. However, I had to use some of the classical algorithms for a mere enterprise application.
I was building a metadata migration tool, and I had to use topological sort for dependency resolution, various forms of graph traversals for queries on metadata, and a modified variation of Tarjan's union-find datastructure to partition forest-like structured metadata to trees.
That was a really satisfying experience. Most of those algorithms were implemented before, but their implementations lacked something that I would need for my task. That's why It's important to understand their internals.

Resources