Can any algorithmic puzzle be implemented in a purely functional way? - algorithm

I've been contemplating programming language designs, and from the definition of Declarative Programming on Wikipedia:
This is in contrast from imperative programming, which requires a detailed description of the algorithm to be run.
and further down:
... Any style of programming that is not imperative. ...
It then goes on to express that functional languages, because they are not imperative, are declarative by their very nature.
However, this makes me wonder, are purely functional programming languages able to solve any algorithmic problem, or are the constraints based upon what functions are available in that language?
I'm mostly interested in general thoughts on the subject, although if specific examples can illustrate the point, I certainly welcome them.

According to the Church-Turing Thesis ,
the three computational processes (recursion, λ-calculus, and Turing machine) were shown to be equivalent"
where Turing machine can be read as "procedural" and lambda calculus as "functional".

Yes, Haskell, Erlang, etc. are Turing complete languages. In principle, you don't need mutable state to solve a problem, since you can always create a new object instead of mutating the old one. Of course, Brainfuck is also Turing complete. In other words, just because an algorithm can be expressed in a functional language doesn't mean it's not horribly awkward.

OK, so Church and Turing provied it is possible, but how do we actually do something?
Rewriting imperative code in pure functional style is an exercise I frequently assign to undergraduate students:
Each mutable variable becomes a function parameter
Loops are rewritten using recursion
Each goto is expressed as a function call with arguments
Sometimes what comes out is a mess, but often the results are surprisingly elegant. The only real trick is not to pass arguments that never change, but instead to let-bind them in the outer environment.

The big difference with functional style programming is that it avoids mutable state. Where imperative programming will typically update variables, functional programming will define new, read-only values.
The main place where this will hit performance is with algorithms that use updatable arrays. An imperative implementation can update an array element in O(1) time, while the best a purely functional style of implementation can achieve is O(log N) (using a sorted tree).
Note that functional languages generally have some way to use updateable arrays with O(1) access time (e.g., Haskell provides this with its state transformer monad). However, this is arguably an imperative programming method... nothing wrong with that; you want to use the best tools for a particular job, after all.
The functional style of O(log N) incremental array update is not all bad, though, as functional style algorithms seem to lend themselves well to parallellization.

Too long to be posted as a comment on #SteveB's answer.
Functional programming and imperative programming have equal capability: whatever one can do, the other can do. They are said to be Turing complete. The functions that a Turing machine can compute are exactly the ones that recursive function theory and λ-calculus express.
But the Church-Turing Thesis, as such, is irrelevant. It asserts that any computation can be carried out by a Turing machine. This relates an informal idea - computation - to a formal one - the Turing machine. Nobody has yet found anything we would recognise as computation that a Turing machine can't do. Will someone find such a thing in future? Who can tell.

Using state monads you can program in an imperative style in Haskell.
So the assertion that Haskell is declarative by its very nature needs to be taken with a grain of salt. On the positive side it then is equivalent to imperative programming languages, also in a practical sense which doesn't completely ignore efficiency.

While I completely agree with the answer that invokes Church-Turing thesis, this begs an interesting question actually. If I have a parallel computation problem (which is not algorithmic in a strict mathematical sense), such as multiple producer/consumer queue or some network protocol between several machines, can this be adequately modeled by Turing machine? It can be simulated, but if we simulate it, we lose the purpose why we have the parallelism in the problem (because then we can find simpler algorithm on the Turing machine). So what if we were not to lose parallelism inherent to the problem (and thus the reason why are we interested in it), we couldn't remove the notion of state?

I remember reading somewhere that there are problems which are provably harder when solved in a purely functional manner, but I can't seem to find the reference.
As noted above, the primary problem is array updates. While the compiler may use a mutable array under the hood in some conditions, it must be guaranteed that only one reference to the array exists in the entire program.
Not only is this a hard mathematical fact, it is also a problem in practice, if you don't use impure constructs.
On a more subjective note, stating that all Turing complete languages are equivalent is only true in a narrow mathematical sense. Paul Graham explores the issue in Beating the Averages in the section "The Blub Paradox."
Formal results such as Turing-completeness may be provably correct, but they are not necessarily useful. The travelling salesman problem may be NP-complete, and yet salesman travel all the time. It seems they don't feel the need to follow an "optimal" path, so the theorem is irrelevant.
NOTE: I am not trying to bash functional programming, since I really like it. It is just important to remember that it is not a panacea.

Related

Is there a functional algorithm which is faster than an imperative one?

I'm searching for an algorithm (or an argument of such an algorithm) in functional style which is faster than an imperative one.
I like functional code because it's expressive and mostly easier to read than it's imperative pendants. But I also know that this expressiveness can cost runtime overhead. Not always due to techniques like tail recursion - but often they are slower.
While programming I don't think about runtime costs of functional code because nowadays PCs are very fast and development time is more expensive than runtime. Furthermore for me readability is more important than performance. Nevertheless my programs are fast enough so I rarely need to solve a problem in an imperative way.
There are some algorithms which in practice should be implemented in an imperative style (like sorting algorithms) otherwise in most cases they are too slow or requires lots of memory.
In contrast due to techniques like pattern matching a whole program like a parser written in an functional language may be much faster than one written in an imperative language because of the possibility of compilers to optimize the code.
But are there any algorithms which are faster in a functional style or are there possibilities to setting up arguments of such an algorithm?
A simple reasoning. I don't vouch for terminology, but it seems to make sense.
A functional program, to be executed, will need to be transformed into some set of machine instructions.
All machines (I've heard of) are imperative.
Thus, for every functional program, there's an imperative program (roughly speaking, in assembler language), equivalent to it.
So, you'll probably have to be satisfied with 'expressiveness', until we get 'functional computers'.
The short answer:
Anything that can be easily made parallel because it's free of side-effects will be quicker on a multi-core processor.
QuickSort, for example, scales up quite nicely when used with immutable collections: http://en.wikipedia.org/wiki/Quicksort#Parallelization
All else being equal, if you have two algorithms that can reasonably be described as equivalent, except that one uses pure functions on immutable data, while the second relies on in-place mutations, then the first algorithm will scale up to multiple cores with ease.
It may even be the case that your programming language can perform this optimization for you, as with the scalaCL plugin that will compile code to run on your GPU. (I'm wondering now if SIMD instructions make this a "functional" processor)
So given parallel hardware, the first algorithm will perform better, and the more cores you have, the bigger the difference will be.
FWIW there are Purely functional data structures, which benefit from functional programming.
There's also a nice book on Purely Functional Data Structures by Chris Okasaki, which presents data structures from the point of view of functional languages.
Another interesting article Announcing Intel Concurrent Collections for Haskell 0.1, about parallel programming, they note:
Well, it happens that the CnC notion
of a step is a pure function. A step
does nothing but read its inputs and
produce tags and items as output. This
design was chosen to bring CnC to that
elusive but wonderful place called
deterministic parallelism. The
decision had nothing to do with
language preferences. (And indeed, the
primary CnC implementations are for
C++ and Java.)
Yet what a great match Haskell and CnC
would make! Haskell is the only major
language where we can (1) enforce that
steps be pure, and (2) directly
recognize (and leverage!) the fact
that both steps and graph executions
are pure.
Add to that the fact that Haskell is
wonderfully extensible and thus the
CnC "library" can feel almost like a
domain-specific language.
It doesn't say about performance – they promise to discuss some of the implementation details and performance in future posts, – but Haskell with its "pureness" fits nicely into parallel programming.
One could argue that all programs boil down to machine code.
So, if I dis-assemble the machine code (of an imperative program) and tweak the assembler, I could perhaps end up with a faster program. Or I could come up with an "assembler algorithm" that exploits some specific CPU feature, and therefor it really is faster than the imperative language version.
Does this situation lead to the conclusion that we should use assembler everywhere? No, we decided to use imperative languages because they are less cumbersome. We write pieces in assembler because we really need to.
Ideally we should also use FP algorithms because they are less cumbersome to code, and use imperative code when we really need to.
Well, I guess you meant to ask if there is an implementation of an algorithm in functional programming language that is faster than another implementation of the same algorithm but in an imperative language. By "faster" I mean that it performs better in terms of execution time or memory footprint on some inputs according to some measurement that we deem trustworthy.
I do not exclude this possibility. :)
To elaborate on Yasir Arsanukaev's answer, purely functional data structures can be faster than mutable data structures in some situations becuase they share pieces of their structure. Thus in places where you might have to copy a whole array or list in an imperative language, where you can get away with a fraction of the copying because you can change (and copy) only a small part of the data structure. Lists in functional languages are like this -- multiple lists can share the same tail since nothing can be modified. (This can be done in imperative languages, but usually isn't, because within the imperative paradigm, people aren't usually used to talking about immutable data.)
Also, lazy evaluation in functional languages (particularly Haskell which is lazy by default) can also be very advantageous because it can eliminate code execution when the code's results won't actually be used. (One can be very careful not to run this code in the first place in imperative languages, however.)

Mutability in functional programming

First I am a Haskell newbie.
I've read this:
Immutable functional objects in highly mutable domain
And my question is nearly the same -- how to efficiently write algorithms where the state is supposed to change. Let's take for example Dijkstra's algorithm. There will be new paths found and distances should be updated. And in traditional languages this is simple while in Haskell for example I can only think of creating entirely new distances which will be too slow and memory consuming. Are there something like design patterns for such cases where one should implement algorithm with mutable data structure and speed and memory usage are main concerns?
There are of course many ways functional languages address this issue.
Different data structures - many data structures can be implemented in a purely functional manner, with the same algorithmic complexity as imperative versions. Probably the most well-known work in this area is Chris Okasaki's Purely Functional Data Structures, but there are many other resources as well. For Dijkstra's algorithm, Martin Erwig's work on functional graphs is appropriate. See this question as well.
Different algorithms - some algorithms have assumptions of mutability built-in, Quicksort is an example of this. In this case an alternative algorithm can be used that's more amenable to immutability.
Mutable state - every functional language can model functional state with a State monad. Most provide other forms of mutability as well, such as Haskell's ST monad and IORef's.
The ST Monad lets you use mutable state internally, but present a pure external interface.
Creating new immutable objects isn't nearly as expense as you might think, since large amounts of structural sharing can occur because the compiler KNOWS they can't change and thus can be safely shared. That said, using highly imperative algorithms with lots of mutable state in Haskell is a bit of a code smell.
In ML derivatives (such as OCaml, SML, F#), there are "references", which can be used as mutable variables.
In Haskell, this isn't cleanly handled. State is simply not covered by the usual "purely functional" style. Pure FP languages deal with "eternal truths", and are thus not very suitable for working with "ephemeral truths" (although it can be done, definitely).
However, yes, sometimes we need mutable state. A language such as ATS incorporates linear types for handling destructive updates and safe resource manipulation.

What makes a problem more fundamental than another?

Is there any formal definition for what makes a problem more fundamental than another? Otherwise, what would be an acceptable informal definition?
An example of a problem that is more fundamental than another would be sorting vs font rendering.
When many problems can be solved using one algorithm, for instance. This is the case for any optimal algorithm for sorting. BTW, perhaps you're mixing problems and algorithms? There is a formal definition of one problem being reducible to another. See http://en.wikipedia.org/wiki/Reduction_(complexity)
The original question is a valid one, and does not have to assume/consider complexity and reducibility as #slebetman suggested. (Thus making the question more fundamental :)
If we attempt a formal definition, we could have this one: Problem P1 is more fundamental than problem P2, if a solution to P1 affects the outcome of a wider set of other problems. This likely implies that P1 will affect problems in different domains of computer science - and possibly beyond.
In practical terms, I would correct again #slebetman. Instead of "if something uses or challenges an assumption then it is less fundamental than that assumption", I would say "if a problem uses or challenges an assumption then it is less fundamental than the same problem without the assumption". I.e. sorting of Objects is more fundamental than sorting of Integers; or, font rendering on a printer is less fundamental than font rendering on any device.
If I understood your question right.
When you can solve the same problem by applying many algorithms, the algorithm which proves its lightweight on both of memory and CPU is considered more fundamental. And I can think of another thing which is, a fundamental algorithm will not use other algorithms, otherwise it would be a complex one.
The problem or solution that has more applications is more fundamental.
(Sorting has many appications, P!=NP too has many applications (or implications), rendeering only has a few applications.)
Inf is right when he hinted at complexity and reducibility but not just of what is involved/included in an algorithm's implementation. It's the assumptions you make.
All pieces of code are written with assumptions about the world in which it operates. Those assumptions are more fundamental than the code written with those assumptions. In short, I would say: if something uses or challenges an assumption then it is less fundamental than that assumption.
Lets take an example: sorting. The problem of sorting is that when done the naive way the time it takes to sort grows very quickly. In technical terms, the problem of sorting tends towards being NP complete. So sorting algorithms are developed with the aim of avoiding being NP complete. But is NP complete always slow? That's a problem unto itself and the problem is called P!=NP which so far has not been proven either true or false. So P!=NP is more fundamental than sorting.
But even P!=NP makes some assumptions. It assumes that NP complete problems can always be run to completion even if it takes a long time to complete. In other words, the big-O notation for an NP complete problem is never infinite. This begs the question are all problems guaranteed to have a point of completion? The answer to that is no, not all problems have a guaranteed point of completion, the most trivial of which is the infinite loop: while (1) {print "still running!"}. So can we detect all cases of programs running infinitely? No, and the proof of that is the halting problem. Hence the halting problem is more fundamental than P!=NP.
But even the halting problem makes assumptions. We assume that we are running all our programs on a particular kind of CPU. Can we treat all CPUs as equivalent? Is there a CPU out there that can be built to solve the halting problem? Well, the answer is as long as a CPU is Turing complete, they are equivalent with other CPUs that are Turing complete. Turing completeness is therefore a more fundamental problem than the halting problem.
We can go on and on and question our assumptions like: are all kinds of signals equivalent? Is it possible that a fluidic or mechanical computer be fundamentally different than an electronic computer? And it will lead us to things like Shannon's information theory and Boolean algebra etc and each assumption that we uncover are more fundamental than the one above it.

Is there any algorithm needs functional language exclusively to be implemented

I'm a C# developer and I don't have enough information about functional languages,
My question that is there any algorithm needs functional language exclusively to be implemented?
Regards.
As long as a language is Turing complete, any algorithm can be implemented in it (by definition of "algorithm"). But as others have said, functional languages can do certain things more elegantly. (Just take a look at Haskell. What a lovely language.) I'd also argue that there is a class of problems that OOP languages do better. (In my opinion, GUIs, although some may disagree.)
No, however a functional language may lead to a more elegant implementation for an algorithm that can exploit the features of such a language. For example, one that requires large recursive depth.
As I understand it, such algorithm would have to be translated into a set of machine commands executed on some micro-processor (whether you use compiled or interpreted language). And none of the current processors are 'functional'.
In fact, this leads to even broader assertion: any 'functional algorithm' can be implemented in C or assembler :)

Formally verifying the correctness of an algorithm

First of all, is this only possible on algorithms which have no side effects?
Secondly, where could I learn about this process, any good books, articles, etc?
COQ is a proof assistant that produces correct ocaml output. It's pretty complicated though. I never got around to looking at it, but my coworker started and then stopped using it after two months. It was mostly because he wanted to get things done quicker, but if you need to verify an algorithm this might be a good idea.
Here is a course that uses COQ and talks about proving algorithms.
And here is a tutorial about writing academic papers in COQ.
It's generally a lot easier to verify/prove correctness when no side effects are involved, but it's not an absolute requirement.
You might want to look at some of the documentation for a formal specification language like Z. A formal specification isn't a proof itself, but is often the basis for one.
I think that verifying the correctness of an algorithm would be validating its conformance with a specification. There is a branch of theoretical Computer Science called Formal Methods which may be what you are looking for if you need to get as close to proof as you can. From wikipedia,
Formal Methods are a particular kind
of mathematically-based techniques for
the specification, development and
verification of software and hardware
systems
You will be able to find many learning resources and tools from the multitude of links on the linked Wikipedia page and from the Formal Methods wiki.
Usually proofs of correctness are very specific to the algorithm at hand.
However, there are several well known tricks that are used and re-used again. For example, with recursive algorithms you can use loop invariants.
Another common trick is reducing the original problem to a problem for which your algorithm's proof of correctness is easier to show, then either generalizing the easier problem or showing that the easier problem can be translated to a solution to the original problem. Here is a description.
If you have a particular algorithm in mind, you may do better in asking how to construct a proof for that algorithm rather than a general answer.
Buy these books: http://www.amazon.com/Science-Programming-Monographs-Computer/dp/0387964800
The Gries book, Scientific Programming is great stuff. Patient, thorough, complete.
Logic in Computer Science, by Huth and Ryan, gives a reasonably readable overview of modern systems for verifying systems. Once upon a time people talked about proving programs correct - with programming languages which may or may not have side effects. The impression I get from this book and elsewhere is that real applications are different - for instance proving that a protocol is correct, or that a chip's floating point unit can divide correctly, or that a lock-free routine for manipulating linked lists is correct.
ACM Computing Surveys Vol 41 Issue 4 (October 2009) is a special issue on software verification. It looks like you can get to at least one of the papers without an ACM account by searching for "Formal Methods: Practice and Experience".
The tool Frama-C, for which Elazar suggests a demo video in the comments, gives you a specification language, ACSL, for writing function contracts and various analyzers for verifying that a C function satisfies its contract and safety properties such as the absence of run-time errors.
An extended tutorial, ACSL by example, shows examples of actual C algorithms being specified and verified, and separates the side-effect-free functions from the effectful ones (the side-effect-free ones are considered easier and come first in the tutorial). This document is also interesting in that it was not written by the designers of the tools it describe, so it gives a fresher and more didactic look at these techniques.
If you are familiar with LISP then you should definitely check out ACL2: http://www.cs.utexas.edu/~moore/acl2/acl2-doc.html
Dijkstra's Discipline of Programming and his EWDs lay the foundation for formal verification as a science in programming. A simpler work is Wirth's Systematic Programming, which begins with the simple approach to using verification. Wirth uses pre-ISO Pascal for the language; Dijkstra uses an Algol-68-like formalism called Guarded (GCL). Formal verification has matured since Dijkstra and Hoare, but these older texts may still be a good starting point.
PVS tool developed by Stanford guys is a specification and verification system. I worked on it and found it very useful for Theoram Proving.
WRT (1), you will probably have to create a model of the algorithm in a way that "captures" the side-effects of the algorithm in a program variable intended to model such state-based side-effects.

Resources