Say I got a set of 10 random numbers between 0 and 100.
An operator gives me also a random number between 0 and 100.
Then I got to find the number in the set that is the closest from the number the operator gave me.
example
set = {1,10,34,39,69,89,94,96,98,100}
operator number = 45
return = 39
And how do translate this into code? (javascript or something)
if set is ordered, do a binary search to find the value, (or the 2 values) that are closest. Then distinguish which of 2 is closest by ... subtracting?
If set is not ordered, just iterate through the set, (Sorting it would itself take more than one pass), and for each member, check to see if the difference is smaller than the smallest difference you have seen so far, and if it is, record it as the new smallest difference, and that number as the new candidate answer. .
public int FindClosest(int targetVal, int[] set)
{
int dif = 100, cand = 0;
foreach(int x in set)
if (Math.Abs(x-targetVal) < dif)
{
dif = Math.Abs(x-targetVal);
cand = x;
}
return cand;
}
given an array called input, create another array of the same size
each element of this new array is the Math.abs(input[i] - operatorNumber)
select the index of the mininum element (let's call it k)
your answer is input[k]
NB
sorting is not needed
you can do it without the extra array
Sample implementation in JavaScript
function closestTo(number, set) {
var closest = set[0];
var prev = Math.abs(set[0] - number);
for (var i = 1; i < set.length; i++) {
var diff = Math.abs(set[i] - number);
if (diff < prev) {
prev = diff;
closest = set[i];
}
}
return closest;
}
How about this:
1) Put the set into a binary tree.
2) Insert the operator number into the tree
3) Return the Operators parent
order the set
binary search for the input
if you end up between two elements, check the difference, and return the one with the smallest difference.
Someone tagged this question Mathematica, so here's a Mathematica answer:
set = {1,10,34,39,69,89,94,96,98,100};
opno = 45;
set[[Flatten[
Position[set - opno, i_ /; Abs[i] == Min[Abs[set - opno]]]]]]
It works when there are multiple elements of set equally distant from the operator number.
python example:
#!/usr/bin/env python
import random
from operator import itemgetter
sample = random.sample(range(100), 10)
pivot = random.randint(0, 100)
print 'sample: ', sample
print 'pivot:', pivot
print 'closest:', sample[
sorted(
map(lambda i, e: (i, abs(e - pivot)), range(10), sample),
key=itemgetter(1)
)[1][0]]
# sample: [61, 2, 3, 85, 15, 18, 19, 8, 66, 4]
# pivot: 51
# closest: 66
Related
I was asked in an interview today below question. I gave O(nlgn) solution but I was asked to give O(n) solution. I could not come up with O(n) solution. Can you help?
An input array is given like [1,2,4] then every element of it is doubled and
appended into the array. So the array now looks like [1,2,4,2,4,8]. How
this array is randomly shuffled. One possible random arrangement is
[4,8,2,1,2,4]. Now we are given this random shuffled array and we want to
get original array [1,2,4] in O(n) time.
The original array can be returned in any order. How can I do it?
Here's an O(N) Java solution that could be improved by first making sure that the array is of the proper form. For example it shouldn't accept [0] as an input:
import java.util.*;
class Solution {
public static int[] findOriginalArray(int[] changed) {
if (changed.length % 2 != 0)
return new int[] {};
// set Map size to optimal value to avoid rehashes
Map<Integer,Integer> count = new HashMap<>(changed.length*100/75);
int[] original = new int[changed.length/2];
int pos = 0;
// count frequency for each number
for (int n : changed) {
count.put(n, count.getOrDefault(n,0)+1);
}
// now decide which go into the answer
for (int n : changed) {
int smallest = n;
for (int m=n; m > 0 && count.getOrDefault(m,0) > 0; m = m/2) {
//System.out.println(m);
smallest = m;
if (m % 2 != 0) break;
}
// trickle up from smallest to largest while count > 0
for (int m=smallest, mm = 2*m; count.getOrDefault(mm,0) > 0; m = mm, mm=2*mm){
int ct = count.getOrDefault(mm,0);
while (count.get(m) > 0 && ct > 0) {
//System.out.println("adding "+m);
original[pos++] = m;
count.put(mm, ct -1);
count.put(m, count.get(m) - 1);
ct = count.getOrDefault(mm,0);
}
}
}
// check for incorrect format
if (count.values().stream().anyMatch(x -> x > 0)) {
return new int[] {};
}
return original;
}
public static void main(String[] args) {
int[] changed = {1,2,4,2,4,8};
System.out.println(Arrays.toString(changed));
System.out.println(Arrays.toString(findOriginalArray(changed)));
}
}
But I've tried to keep it simple.
The output is NOT guaranteed to be sorted. If you want it sorted it's going to cost O(NlogN) inevitably unless you use a Radix sort or something similar (which would make it O(NlogE) where E is the max value of the numbers you're sorting and logE the number of bits needed).
Runtime
This may not look that it is O(N) but you can see that it is because for every loop it will only find the lowest number in the chain ONCE, then trickle up the chain ONCE. Or said another way, in every iteration it will do O(X) iterations to process X elements. What will remain is O(N-X) elements. Therefore, even though there are for's inside for's it is still O(N).
An example execution can be seen with [64,32,16,8,4,2].
If this where not O(N) if you print out each value that it traverses to find the smallest you'd expect to see the values appear over and over again (for example N*(N+1)/2 times).
But instead you see them only once:
finding smallest 64
finding smallest 32
finding smallest 16
finding smallest 8
finding smallest 4
finding smallest 2
adding 2
adding 8
adding 32
If you're familiar with the Heapify algorithm you'll recognize the approach here.
def findOriginalArray(self, changed: List[int]) -> List[int]:
size = len(changed)
ans = []
left_elements = size//2
#IF SIZE IS ODD THEN RETURN [] NO SOLN. IS POSSIBLE
if(size%2 !=0):
return ans
#FREQUENCY DICTIONARY given array [0,0,2,1] my map will be: {0:2,2:1,1:1}
d = {}
for i in changed:
if(i in d):
d[i]+=1
else:
d[i] = 1
# CHECK THE EDGE CASE OF 0
if(0 in d):
count = d[0]
half = count//2
if((count % 2 != 0) or (half > left_elements)):
return ans
left_elements -= half
ans = [0 for i in range(half)]
#CHECK REST OF THE CASES : considering the values will be 10^5
for i in range(1,50001):
if(i in d):
if(d[i] > 0):
count = d[i]
if(count > left_elements):
ans = []
break
left_elements -= d[i]
for j in range(count):
ans.append(i)
if(2*i in d):
if(d[2*i] < count):
ans = []
break
else:
d[2*i] -= count
else:
ans = []
break
return ans
I have a simple idea which might not be the best, but I could not think of a case where it would not work. Having the array A with the doubled elements and randomly shuffled, keep a helper map. Process each element of the array and, each time you find a new element, add it to the map with the value 0. When an element is processed, increment map[i] and decrement map[2*i]. Next you iterate over the map and print the elements that have a value greater than zero.
A simple example, say that the vector is:
[1, 2, 3]
And the doubled/shuffled version is:
A = [3, 2, 1, 4, 2, 6]
When processing 3, first add the keys 3 and 6 to the map with value zero. Increment map[3] and decrement map[6]. This way, map[3] = 1 and map[6] = -1. Then for the next element map[2] = 1 and map[4] = -1 and so forth. The final state of the map in this example would be map[1] = 1, map[2] = 1, map[3] = 1, map[4] = -1, map[6] = 0, map[8] = -1, map[12] = -1.
Then you just process the keys of the map and, for each key with a value greater than zero, add it to the output. There are certainly more efficient solutions, but this one is O(n).
In C++, you can try this.
With time is O(N + KlogK) where N is the length of input, and K is the number of unique elements in input.
class Solution {
public:
vector<int> findOriginalArray(vector<int>& input) {
if (input.size() % 2) return {};
unordered_map<int, int> m;
for (int n : input) m[n]++;
vector<int> nums;
for (auto [n, cnt] : m) nums.push_back(n);
sort(begin(nums), end(nums));
vector<int> out;
for (int n : nums) {
if (m[2 * n] < m[n]) return {};
for (int i = 0; i < m[n]; ++i, --m[2 * n]) out.push_back(n);
}
return out;
}
};
Not so clear about the space complexity required in the question, so this is my top-of-the-mind attempt to this question if this requires O(n) time complexity.
If the length of the input array is not even, then its wrong !!
Create a map, add the elements of the input array to it.
Divide each element in the input array by 2 and check if that value exists in the map. If it exists, add it to the array (slice) orig.
There is a chance we have added duplicate values to this original array, clean it!!
Here is a sample go code:
https://go.dev/play/p/w4mm-rloHyi
I am sure we can optimize this code in a lot of ways for space complexities. But its O(n) time complexity.
I am trying to pick one number from multiple arraylists and find all possible ways to pick the numbers such that the sum of those numbers is greater than a given number. I can only think of brute force implementation.
For example, I have five arraylists such as
A = [2, 6, 7]
B = [6, 9]
C = [4]
D = [4, 7]
E = [8, 10, 15]
and a given number is 40.
Then after picking one number from each list, all possible ways could be
[7, 9, 4, 7, 15]
[6, 9, 4, 7, 15]
So, these are the two possible ways to pick numbers greater than or equal to 40. In case the given number is small then there could be many solutions. So how can I count them without brute force? Even with brute force how do I devise the solution in Java.
Below is my implementation. It works fine for small numbers but if the numbers are large then it gives me runtime error since the program runs for too long.
public static void numberOfWays(List<Integer> A, List<Integer> B, List<Integer> C, List<Integer> D,
List<Integer> E, int k){
long ways = 0;
for(Integer a:A){
for(Integer b:B){
for(Integer c:C){
for(Integer d:D){
for(Integer e:E){
int sum = a+b+c+d+e;
//System.out.println(a+" "+b+" "+c+" "+d+" "+e+" "+sum);
if(sum > k)
ways++;
}
}
}
}
}
System.out.println(ways);
}
The list can contain up to 1000 elements and the elements can range from 1 to 1000. The threshold value k can range from 1 to 10^9.
I am not a java programmer.But I think its a logical problem.So,I have solved it for you in python.I am pretty sure you can convert it into java.
Here is the code:
x = input('Enter the number:')
a = [2, 6, 7]
b = [6, 9]
c = [4]
d = [4, 7]
e = [8, 10, 15]
i = 0
z = 0
final_list = []
while i <= int(x):
try:
i += a[z]
final_list.append(a[z])
except BaseException:
pass
try:
i += b[z]
final_list.append(b[z])
except BaseException:
pass
try:
i += c[z]
final_list.append(c[z])
except BaseException:
pass
try:
i += d[z]
final_list.append(d[z])
except BaseException:
pass
try:
i += e[z]
final_list.append(e[z])
except BaseException:
pass
z += 1
print(final_list)
One way is this. There has to be at least one solution where you pick one number from each array and add them up to be greater than or equal to another.
Considering the fact that arrays might have random numbers in any order, first use this sort function to have them in decreasing order (largest number first, smallest number last) :
Arrays.sort(<array name>, Collections.reverseOrder());
Then pick the 1st element in the array :
v = A[0]
w = B[0]
x = C[0]
y = D[0]
z = E[0]
Then you can print them like this : v,w,x,y,z
Now your output will be :
7,9,4,7,15
Since it took the largest number of each array, it has to be equal to or greater than the given number, unless the number is greater than all of these combined in which case it is impossible.
Edit : I think I got the question wrong. If you want to know how many of the possible solutions there are, that is much easier.
First create a variable to store the possibilities
var total = 0
Use the rand function to get a random number. In your array say something like :
v=A[Math.random(0,A[].length)]
Do the same thing for all arrays, then add them up
var sum = v+w+x+y+z
Now you have an if statement to see if the sum is greater than or equal to the number given (lets say the value is stored in the variable "given")
if(sum >= given){
total+=1
}else{
<repeat the random function to restart the process and generate a new sum>
}
Finally, you need to repeat this multiple times as incase there are multiple solutions, the code will only find one and give you a false total.
To solve this, create a for loop and put all of this code inside it :
//create a variable outside to store the total number of elements in all the arrays
var elements = A[].length + B[].length + C[].length + D[].length + E[].length
for(var i = 0; i <= elements; i++){
<The code is inside here, except for "total" as otherwise the value will keep resetting>
}
The end result should look something like this :
var total = 0
var elements = A[].length + B[].length + C[].length + D[].length + E[].length
for(var i = 0; i <= elements; i++){
v=A[Math.random(0,A[].length)]
w=B[Math.random(0,B[].length)]
x=C[Math.random(0,C[].length)]
y=D[Math.random(0,D[].length)]
z=E[Math.random(0,E[].length)]
var sum = v+w+x+y+z
if(sum >= given){
total+=1
}else{
v=A[Math.random(0,A[].length)]
w=B[Math.random(0,B[].length)]
x=C[Math.random(0,C[].length)]
y=D[Math.random(0,D[].length)]
z=E[Math.random(0,E[].length)]
}
}
At the end just print the total once the entire cycle is over or just do
console.log(total)
This is just for reference and the code might not work, it probably has a bunch of bugs in it, this was just my 1st draft attempt at it. I have to test it out on my own but i hope you see where I'm coming from. Just look at the process, make your own amendments and this should work fine.
I have not deleted the first part of my answer even though it isn't the answer to this question just so that if you're having trouble in that part as well, where you select the highest possible number, it might help you
Good luck!
I'm stuck on this problem.
Given an array of numbers. At each step we can pick a number like N in this array and sum N with another number that exist in this array. We continue this process until all numbers in this array equals to zero. What is the minimum number of steps required? (We can guarantee initially the sum of numbers in this array is zero).
Example: -20,-15,1,3,7,9,15
Step 1: pick -15 and sum with 15 -> -20,0,1,3,7,9,0
Step 2: pick 9 and sum with -20 -> -11,0,1,3,7,0,0
Step 3: pick 7 and sum with -11 -> -4,0,1,3,0,0,0
Step 4: pick 3 and sum with -4 -> -1,0,1,0,0,0,0
Step 5: pick 1 and sum with -1 -> 0,0,0,0,0,0,0
So the answer of this example is 5.
I've tried using greedy algorithm. It works like this:
At each step we pick maximum and minimum number that already available in this array and sum these two numbers until all numbers in this array equals to zero.
but it doesn't work and get me wrong answer. Can anyone help me to solve this problem?
#include <bits/stdc++.h>
using namespace std;
int a[] = {-20,-15,1,3,7,9,15};
int bruteforce(){
bool isEqualToZero = 1;
for (int i=0;i<(sizeof(a)/sizeof(int));i++)
if (a[i] != 0){
isEqualToZero = 0;
break;
}
if (isEqualToZero)
return 0;
int tmp=0,m=1e9;
for (int i=0;i<(sizeof(a)/sizeof(int));i++){
for (int j=i+1;j<(sizeof(a)/sizeof(int));j++){
if (a[i]*a[j] >= 0) continue;
tmp = a[j];
a[i] += a[j];
a[j] = 0;
m = min(m,bruteforce());
a[j] = tmp;
a[i] -= tmp;
}
}
return m+1;
}
int main()
{
cout << bruteforce();
}
This is the brute force approach that I've written for this problem. Is there any algorithm to solve this problem faster?
This has an np-complete feel, but the following search does an A* search through all possible normalized partial sums on the way to a single non-zero term. Which solves your problem, and means that you don't get into an infinite loop if the sum is not zero.
If greedy works, this will explore the greedy path first, verify that you can't do better, and return fairly quickly. If greedy doesn't work, this may...take a lot longer.
Implementation in Python because that is easy for me. Translation into another language is an exercise for the reader.
import heapq
def find_minimal_steps (numbers):
normalized = tuple(sorted(numbers))
seen = set([normalized])
todo = [(min_steps_remaining(normalized), 0, normalized, None)]
while todo[0][0] < 7:
step_limit, steps_taken, prev, path = heapq.heappop(todo)
steps_taken = -1 * steps_taken # We store negative for sort order
if min_steps_remaining(prev) == 0:
decoded_path = []
while path is not None:
decoded_path.append((path[0], path[1]))
path = path[2]
return steps_taken, list(reversed(decoded_path))
prev_numbers = list(prev)
for i in range(len(prev_numbers)):
for j in range(len(prev_numbers)):
if i != j:
# Track what they were
num_i = prev_numbers[i]
num_j = prev_numbers[j]
# Sum them
prev_numbers[i] += num_j
prev_numbers[j] = 0
normalized = tuple(sorted(prev_numbers))
if (normalized not in seen):
seen.add(normalized)
heapq.heappush(todo, (
min_steps_remaining(normalized) + steps_taken + 1,
-steps_taken - 1, # More steps is smaller is looked at first
normalized,
(num_i, num_j, path)))
# set them back.
prev_numbers[i] = num_i
prev_numbers[j] = num_j
print(find_minimal_steps([-20,-15,1,3,7,9,15]))
For fun I also added a linked list implementation that doesn't just tell you how many minimal steps, but which ones it found. In this case its steps were (-15, 15), (7, 9), (3, 16), (1, 19), (-20, 20) meaning add 15 to -15, 9 to 7, 16 to 3, 19 to 1, and 20 to -20.
I have the following code which implements a recursive solution for this problem, instead of using the reference variable 'x' to store overall max, How can I or can I return the result from recursion so I don't have to use the 'x' which would help memoization?
// Test Cases:
// Input: {1, 101, 2, 3, 100, 4, 5} Output: 106
// Input: {3, 4, 5, 10} Output: 22
int sum(vector<int> seq)
{
int x = INT32_MIN;
helper(seq, seq.size(), x);
return x;
}
int helper(vector<int>& seq, int n, int& x)
{
if (n == 1) return seq[0];
int maxTillNow = seq[0];
int res = INT32_MIN;
for (int i = 1; i < n; ++i)
{
res = helper(seq, i, x);
if (seq[i - 1] < seq[n - 1] && res + seq[n - 1] > maxTillNow) maxTillNow = res + seq[n - 1];
}
x = max(x, maxTillNow);
return maxTillNow;
}
First, I don't think this implementation is correct. For this input {5, 1, 2, 3, 4} it gives 14 while the correct result is 10.
For writing a recursive solution for this problem, you don't need to pass x as a parameter, as x is the result you expect to get from the function itself. Instead, you can construct a state as the following:
Current index: this is the index you're processing at the current step.
Last taken number: This is the value of the last number you included in your result subsequence so far. This is to make sure that you pick larger numbers in the following steps to keep the result subsequence increasing.
So your function definition is something like sum(current_index, last_taken_number) = the maximum increasing sum from current_index until the end, given that you have to pick elements greater than last_taken_number to keep it an increasing subsequence, where the answer that you desire is sum(0, a small value) since it calculates the result for the whole sequence. by a small value I mean smaller than any other value in the whole sequence.
sum(current_index, last_taken_number) could be calculated recursively using smaller substates. First assume the simple cases:
N = 0, result is 0 since you don't have a sequence at all.
N = 1, the sequence contains only one number, the result is either that number or 0 in case the number is negative (I'm considering an empty subsequence as a valid subsequence, so not taking any number is a valid answer).
Now to the tricky part, when N >= 2.
Assume that N = 2. In this case you have two options:
Either ignore the first number, then the problem can be reduced to the N=1 version where that number is the last one in the sequence. In this case the result is the same as sum(1,MIN_VAL), where current_index=1 since we already processed index=0 and decided to ignore it, and MIN_VAL is the small value we mentioned above
Take the first number. Assume the its value is X. Then the result is X + sum(1, X). That means the solution includes X since you decided to include it in the sequence, plus whatever the result is from sum(1,X). Note that we're calling sum with MIN_VAL=X since we decided to take X, so the following values that we pick have to be greater than X.
Both decisions are valid. The result is whatever the maximum of these two. So we can deduce the general recurrence as the following:
sum(current_index, MIN_VAL) = max(
sum(current_index + 1, MIN_VAL) // ignore,
seq[current_index] + sum(current_index + 1, seq[current_index]) // take
).
The second decision is not always valid, so you have to make sure that the current element > MIN_VAL in order to be valid to take it.
This is a pseudo code for the idea:
sum(current_index, MIN_VAL){
if(current_index == END_OF_SEQUENCE) return 0
if( state[current_index,MIN_VAL] was calculated before ) return the perviously calculated result
decision_1 = sum(current_index + 1, MIN_VAL) // ignore case
if(sequence[current_index] > MIN_VAL) // decision_2 is valid
decision_2 = sequence[current_index] + sum(current_index + 1, sequence[current_index]) // take case
else
decision_2 = INT_MIN
result = max(decision_1, decision_2)
memorize result for the state[current_index, MIN_VAL]
return result
}
My problem can be simplified as follows.
There're s bins, and within each bin there're k numbers.
A combination consists of one number from each bin, so in total there're k^s possible combinations.
The score of a combination is the sum of s numbers it contains.
How can I find all the combinations with score less than some value r?
Right now what I'm doing is,
1) sort the numbers in each bin.
2) start with a priority queue that only contains the combination of the smallest number from each bin.
3) pop a combination from the queue, add s children of that combination to to queue. (a child of a combination is made of replacing one number of the combination to the next larger number in the same bin, so there're s children of a combination.)
4) repeat 3) till the combination popped is larger than r.
Suppose we find n combinations smaller than r, the time complexity of this algorithm is then O(nlog(s-1)n + sklogk).
Of course this algorithm is not optimal. For example instead of starting with the smallest combination, we can start with a known lower bound. And I sort of have a feeling that dynamic programming can be applied here too, but I didn't figure out how to do it.
Any suggestions are welcome, thanks.
After having sorted the bins, you could use a recursive algorithm, that extends a partial selection with an element from the next bin until the selection is complete (or overruns the sum limit). When complete, it is added to the result. Through backtracking all the valid selections get added to the result.
Here is some pseudo code. The last argument is both input and output:
function combinations(int[][] bins, int r, int[] selection, int[][] result):
if r < 0 then:
return
if selection.length >= bins.length then:
result.add(selection)
return
bin = bins[selection.length]
for (i = 0; i < bin.length; i++):
# Concatenate the i-th value from the bin to a new selection array
combinations(bins, r - bin[i], selection + bin[i], result)
Here is an implementation in JavaScript:
function sortBins(bins) {
for (bin of bins) {
bin.sort(function (a,b) { return a-b; });
}
}
function combinations(bins, r, selection, result) {
if (r < 0) return result; // nothing added to result
if (selection.length >= bins.length) return result.concat([selection]);
var bin = bins[selection.length];
for (var i = 0; i < bin.length; i++)
result = combinations(bins, r - bin[i], selection.concat([bin[i]]), result);
return result;
}
// Test data:
var r = 13;
var bins = [
[5, 2, 3],
[9, 4, 1],
[6, 5, 7]
];
// Get solution:
sortBins(bins);
var result = combinations(bins, r, [], []);
// Output results:
console.log(result);