I was asked in an interview today below question. I gave O(nlgn) solution but I was asked to give O(n) solution. I could not come up with O(n) solution. Can you help?
An input array is given like [1,2,4] then every element of it is doubled and
appended into the array. So the array now looks like [1,2,4,2,4,8]. How
this array is randomly shuffled. One possible random arrangement is
[4,8,2,1,2,4]. Now we are given this random shuffled array and we want to
get original array [1,2,4] in O(n) time.
The original array can be returned in any order. How can I do it?
Here's an O(N) Java solution that could be improved by first making sure that the array is of the proper form. For example it shouldn't accept [0] as an input:
import java.util.*;
class Solution {
public static int[] findOriginalArray(int[] changed) {
if (changed.length % 2 != 0)
return new int[] {};
// set Map size to optimal value to avoid rehashes
Map<Integer,Integer> count = new HashMap<>(changed.length*100/75);
int[] original = new int[changed.length/2];
int pos = 0;
// count frequency for each number
for (int n : changed) {
count.put(n, count.getOrDefault(n,0)+1);
}
// now decide which go into the answer
for (int n : changed) {
int smallest = n;
for (int m=n; m > 0 && count.getOrDefault(m,0) > 0; m = m/2) {
//System.out.println(m);
smallest = m;
if (m % 2 != 0) break;
}
// trickle up from smallest to largest while count > 0
for (int m=smallest, mm = 2*m; count.getOrDefault(mm,0) > 0; m = mm, mm=2*mm){
int ct = count.getOrDefault(mm,0);
while (count.get(m) > 0 && ct > 0) {
//System.out.println("adding "+m);
original[pos++] = m;
count.put(mm, ct -1);
count.put(m, count.get(m) - 1);
ct = count.getOrDefault(mm,0);
}
}
}
// check for incorrect format
if (count.values().stream().anyMatch(x -> x > 0)) {
return new int[] {};
}
return original;
}
public static void main(String[] args) {
int[] changed = {1,2,4,2,4,8};
System.out.println(Arrays.toString(changed));
System.out.println(Arrays.toString(findOriginalArray(changed)));
}
}
But I've tried to keep it simple.
The output is NOT guaranteed to be sorted. If you want it sorted it's going to cost O(NlogN) inevitably unless you use a Radix sort or something similar (which would make it O(NlogE) where E is the max value of the numbers you're sorting and logE the number of bits needed).
Runtime
This may not look that it is O(N) but you can see that it is because for every loop it will only find the lowest number in the chain ONCE, then trickle up the chain ONCE. Or said another way, in every iteration it will do O(X) iterations to process X elements. What will remain is O(N-X) elements. Therefore, even though there are for's inside for's it is still O(N).
An example execution can be seen with [64,32,16,8,4,2].
If this where not O(N) if you print out each value that it traverses to find the smallest you'd expect to see the values appear over and over again (for example N*(N+1)/2 times).
But instead you see them only once:
finding smallest 64
finding smallest 32
finding smallest 16
finding smallest 8
finding smallest 4
finding smallest 2
adding 2
adding 8
adding 32
If you're familiar with the Heapify algorithm you'll recognize the approach here.
def findOriginalArray(self, changed: List[int]) -> List[int]:
size = len(changed)
ans = []
left_elements = size//2
#IF SIZE IS ODD THEN RETURN [] NO SOLN. IS POSSIBLE
if(size%2 !=0):
return ans
#FREQUENCY DICTIONARY given array [0,0,2,1] my map will be: {0:2,2:1,1:1}
d = {}
for i in changed:
if(i in d):
d[i]+=1
else:
d[i] = 1
# CHECK THE EDGE CASE OF 0
if(0 in d):
count = d[0]
half = count//2
if((count % 2 != 0) or (half > left_elements)):
return ans
left_elements -= half
ans = [0 for i in range(half)]
#CHECK REST OF THE CASES : considering the values will be 10^5
for i in range(1,50001):
if(i in d):
if(d[i] > 0):
count = d[i]
if(count > left_elements):
ans = []
break
left_elements -= d[i]
for j in range(count):
ans.append(i)
if(2*i in d):
if(d[2*i] < count):
ans = []
break
else:
d[2*i] -= count
else:
ans = []
break
return ans
I have a simple idea which might not be the best, but I could not think of a case where it would not work. Having the array A with the doubled elements and randomly shuffled, keep a helper map. Process each element of the array and, each time you find a new element, add it to the map with the value 0. When an element is processed, increment map[i] and decrement map[2*i]. Next you iterate over the map and print the elements that have a value greater than zero.
A simple example, say that the vector is:
[1, 2, 3]
And the doubled/shuffled version is:
A = [3, 2, 1, 4, 2, 6]
When processing 3, first add the keys 3 and 6 to the map with value zero. Increment map[3] and decrement map[6]. This way, map[3] = 1 and map[6] = -1. Then for the next element map[2] = 1 and map[4] = -1 and so forth. The final state of the map in this example would be map[1] = 1, map[2] = 1, map[3] = 1, map[4] = -1, map[6] = 0, map[8] = -1, map[12] = -1.
Then you just process the keys of the map and, for each key with a value greater than zero, add it to the output. There are certainly more efficient solutions, but this one is O(n).
In C++, you can try this.
With time is O(N + KlogK) where N is the length of input, and K is the number of unique elements in input.
class Solution {
public:
vector<int> findOriginalArray(vector<int>& input) {
if (input.size() % 2) return {};
unordered_map<int, int> m;
for (int n : input) m[n]++;
vector<int> nums;
for (auto [n, cnt] : m) nums.push_back(n);
sort(begin(nums), end(nums));
vector<int> out;
for (int n : nums) {
if (m[2 * n] < m[n]) return {};
for (int i = 0; i < m[n]; ++i, --m[2 * n]) out.push_back(n);
}
return out;
}
};
Not so clear about the space complexity required in the question, so this is my top-of-the-mind attempt to this question if this requires O(n) time complexity.
If the length of the input array is not even, then its wrong !!
Create a map, add the elements of the input array to it.
Divide each element in the input array by 2 and check if that value exists in the map. If it exists, add it to the array (slice) orig.
There is a chance we have added duplicate values to this original array, clean it!!
Here is a sample go code:
https://go.dev/play/p/w4mm-rloHyi
I am sure we can optimize this code in a lot of ways for space complexities. But its O(n) time complexity.
Related
Given a array with +ve and -ve integer , find the maximum sum such that you are not allowed to skip 2 contiguous elements ( i.e you have to select at least one of them to move forward).
eg :-
10 , 20 , 30, -10 , -50 , 40 , -50, -1, -3
Output : 10+20+30-10+40-1 = 89
This problem can be solved using Dynamic Programming approach.
Let arr be the given array and opt be the array to store the optimal solutions.
opt[i] is the maximum sum that can be obtained starting from element i, inclusive.
opt[i] = arr[i] + (some other elements after i)
Now to solve the problem we iterate the array arr backwards, each time storing the answer opt[i].
Since we cannot skip 2 contiguous elements, either element i+1 or element i+2 has to be included
in opt[i].
So for each i, opt[i] = arr[i] + max(opt[i+1], opt[i+2])
See this code to understand:
int arr[n]; // array of given numbers. array size = n.
nput(arr, n); // input the array elements (given numbers)
int opt[n+2]; // optimal solutions.
memset(opt, 0, sizeof(opt)); // Initially set all optimal solutions to 0.
for(int i = n-1; i >= 0; i--) {
opt[i] = arr[i] + max(opt[i+1], opt[i+2]);
}
ans = max(opt[0], opt[1]) // final answer.
Observe that opt array has n+2 elements. This is to avoid getting illegal memory access exception (memory out of bounds) when we try to access opt[i+1] and opt[i+2] for the last element (n-1).
See the working implementation of the algorithm given above
Use a recurrence that accounts for that:
dp[i] = max(dp[i - 1] + a[i], <- take two consecutives
dp[i - 2] + a[i], <- skip a[i - 1])
Base cases left as an exercise.
If you see a +ve integer add it to the sum. If you see a negative integer, then inspect the next integer pick which ever is maximum and add it to the sum.
10 , 20 , 30, -10 , -50 , 40 , -50, -1, -3
For this add 10, 20, 30, max(-10, -50), 40 max(-50, -1) and since there is no element next to -3 discard it.
The last element will go to sum if it was +ve.
Answer:
I think this algorithm will help.
1. Create a method which gives output the maximum sum of particular user input array say T[n], where n denotes the total no. of elements.
2. Now this method will keep on adding array elements till they are positive. As we want to maximize the sum and there is no point in dropping positive elements behind.
3. As soon as our method encounters a negative element, it will transfer all consecutive negative elements to another method which create a new array say N[i] such that this array will contain all the consecutive negative elements that we encountered in T[n] and returns N[i]'s max output.
In this way our main method is not affected and its keep on adding positive elements and whenever it encounters negative element, it instead of adding their real values adds the net max output of that consecutive array of negative elements.
for example: T[n] = 29,34,55,-6,-5,-4,6,43,-8,-9,-4,-3,2,78 //here n=14
Main Method Working:
29+34+55+(sends data & gets value from Secondary method of array [-6,-5,-4])+6+43+(sends data & gets value from Secondary method of array [-8,-9,-4,-3])+2+78
Process Terminates with max output.
Secondary Method Working:
{
N[i] = gets array from Main method or itself as and when required.
This is basically a recursive method.
say N[i] has elements like N1, N2, N3, N4, etc.
for i>=3:
Now choice goes like this.
1. If we take N1 then we can recurse the left off array i.e. N[i-1] which has all elements except N1 in same order. Such that the net max output will be
N1+(sends data & gets value from Secondary method of array N[i-1] recursively)
2. If we doesn't take N1, then we cannot skip N2. So, Now algorithm is like 1st choice but starting with N2. So max output in this case will be
N2+(sends data & gets value from Secondary method of array N[i-2] recursively).
Here N[i-2] is an array containing all N[i] elements except N1 & N2 in same order.
Termination: When we are left with the array of size one ( for N[i-2] ) then we have to choose that particular value as no option.
The recursions will finally yield the max outputs and we have to finally choose the output of that choice which is more.
and redirect the max output to wherever required.
for i=2:
we have to choose the value which is bigger
for i=1:
We can surely skip that value.
So max output in this case will be 0.
}
I think this answer will help to you.
Given array:
Given:- 10 20 30 -10 -50 40 -50 -1 -3
Array1:-10 30 60 50 10 90 40 89 86
Array2:-10 20 50 40 0 80 30 79 76
Take the max value of array1[n-1],array1[n],array2[n-1],array2[n] i.e 89(array1[n-1])
Algorithm:-
For the array1 value assign array1[0]=a[0],array1=a[0]+a[1] and array2[0]=a[0],array2[1]=a[1].
calculate the array1 value from 2 to n is max of sum of array1[i-1]+a[i] or array1[i-2]+a[i].
for loop from 2 to n{
array1[i]=max(array1[i-1]+a[i],array1[i-2]+a[i]);
}
similarly for array2 value from 2 to n is max of sum of array2[i-1]+a[i] or array2[i-2]+a[i].
for loop from 2 to n{
array2[i]=max(array2[i-1]+a[i],array2[i-2]+a[i]);
}
Finally find the max value of array1[n-1],array[n],array2[n-1],array2[n];
int max(int a,int b){
return a>b?a:b;
}
int main(){
int a[]={10,20,30,-10,-50,40,-50,-1,-3};
int i,n,max_sum;
n=sizeof(a)/sizeof(a[0]);
int array1[n],array2[n];
array1[0]=a[0];
array1[1]=a[0]+a[1];
array2[0]=a[0];
array2[1]=a[1];
for loop from 2 to n{
array1[i]=max(array1[i-1]+a[i],array1[i-2]+a[i]);
array2[i]=max(array2[i-1]+a[i],array2[i-2]+a[i]);
}
--i;
max_sum=max(array1[i],array1[i-1]);
max_sum=max(max_sum,array2[i-1]);
max_sum=max(max_sum,array2[i]);
printf("The max_sum is %d",max_sum);
return 0;
}
Ans: The max_sum is 89
public static void countSum(int[] a) {
int count = 0;
int skip = 0;
int newCount = 0;
if(a.length==1)
{
count = a[0];
}
else
{
for(int i:a)
{
newCount = count + i;
if(newCount>=skip)
{
count = newCount;
skip = newCount;
}
else
{
count = skip;
skip = newCount;
}
}
}
System.out.println(count);
}
}
Let the array be of size N, indexed as 1...N
Let f(n) be the function, that provides the answer for max sum of sub array (1...n), such that no two left over elements are consecutive.
f(n) = max (a[n-1] + f(n-2), a(n) + f(n-1))
In first option, which is - {a[n-1] + f(n-2)}, we are leaving the last element, and due to condition given in question selecting the second last element.
In the second option, which is - {a(n) + f(n-1)} we are selecting the last element of the subarray, so we have an option to select/deselect the second last element.
Now starting from the base case :
f(0) = 0 [Subarray (1..0) doesn't exist]
f(1) = (a[1] > 0 ? a[1] : 0); [Subarray (1..1)]
f(2) = max( a(2) + 0, a[1] + f(1)) [Choosing atleast one of them]
Moving forward we can calculate any f(n), where n = 1...N, and store them to calculate next results. And yes, obviously, the case f(N) will give us the answer.
Time complexity o(n)
Space complexity o(n)
n = arr.length().
Append a 0 at the end of the array to handle boundary case.
ans: int array of size n+1.
ans[i] will store the answer for array a[0...i] which includes a[i] in the answer sum.
Now,
ans[0] = a[0]
ans[1] = max(a[1], a[1] + ans[0])
for i in [2,n-1]:
ans[i] = max(ans[i-1] , ans[i-2]) + a[i]
Final answer would be a[n]
If you want to avoid using Dynamic Programming
To find the maximum sum, first, you've to add all the positive
numbers.
We'll be skipping only negative elements. Since we're not
allowed to skip 2 contiguous elements, we will put all contiguous
negative elements in a temp array, and can figure out the maximum sum
of alternate elements using sum_odd_even function as defined below.
Then we can add the maximum of all such temp arrays to our sum of all
positive numbers. And the final sum will give us the desired output.
Code:
def sum_odd_even(arr):
sum1 = sum2 = 0
for i in range(len(arr)):
if i%2 == 0:
sum1 += arr[i]
else:
sum2 += arr[i]
return max(sum1,sum2)
input = [10, 20, 30, -10, -50, 40, -50, -1, -3]
result = 0
temp = []
for i in range(len(input)):
if input[i] > 0:
result += input[i]
if input[i] < 0 and i != len(input)-1:
temp.append(input[i])
elif input[i] < 0:
temp.append(input[i])
result += sum_odd_even(temp)
temp = []
else:
result += sum_odd_even(temp)
temp = []
print result
Simple Solution: Skip with twist :). Just skip the smallest number in i & i+1 if consecutive -ve. Have if conditions to check that till n-2 elements and check for the last element in the end.
int getMaxSum(int[] a) {
int sum = 0;
for (int i = 0; i <= a.length-2; i++) {
if (a[i]>0){
sum +=a[i];
continue;
} else if (a[i+1] > 0){
i++;
continue;
} else {
sum += Math.max(a[i],a[i+1]);
i++;
}
}
if (a[a.length-1] > 0){
sum+=a[a.length-1];
}
return sum;
}
The correct recurrence is as follow:
dp[i] = max(dp[i - 1] + a[i], dp[i - 2] + a[i - 1])
The first case is the one we pick the i-th element. The second case is the one we skip the i-th element. In the second case, we must pick the (i-1)th element.
The problem of IVlad's answer is that it always pick i-th element, which can lead to incorrect answer.
This question can be solved using include,exclude approach.
For first element, include = arr[0], exclude = 0.
For rest of the elements:
nextInclude = arr[i]+max(include, exclude)
nextExclude = include
include = nextInclude
exclude = nextExclude
Finally, ans = Math.max(include,exclude).
Similar questions can be referred at (Not the same)=> https://www.youtube.com/watch?v=VT4bZV24QNo&t=675s&ab_channel=Pepcoding.
How could we find longest increasing sub-sequence starting at each position of the array in O(n log n) time, I have seen techniques to find longest increasing sequence ending at each position of the array but I am unable to find the other way round.
e.g.
for the sequence " 3 2 4 4 3 2 3 "
output must be " 2 2 1 1 1 2 1 "
I made a quick and dirty JavaScript implementation (note: it is O(n^2)):
function lis(a) {
var tmpArr = Array(),
result = Array(),
i = a.length;
while (i--) {
var theValue = a[i],
longestFound = tmpArr[theValue] || 1;
for (var j=theValue+1; j<tmpArr.length; j++) {
if (tmpArr[j] >= longestFound) {
longestFound = tmpArr[j]+1;
}
}
result[i] = tmpArr[theValue] = longestFound;
}
return result;
}
jsFiddle: http://jsfiddle.net/Bwj9s/1/
We run through the array right-to-left, keeping previous calculations in a separate temporary array for subsequent lookups.
The tmpArray contains the previously found subsequences beginning with any given value, so tmpArray[n] will represent the longest subsequence found (to the right of the current position) beginning with the value n.
The loop goes like this: For every index, we look up the value (and all higher values) in our tmpArray to see if we already found a subsequence which the value could be prepended to. If we find one, we simply add 1 to that length, update the tmpArray for the value, and move to the next index. If we don't find a working (higher) subsequence, we set the tmpArray for the value to 1 and move on.
In order to make it O(n log n) we observe that the tmpArray will always be a decreasing array -- it can and should use a binary search rather than a partial loop.
EDIT: I didn't read the post completely, sorry. I thought you needed the longest increasing sub-sequence for all sequence. Re-edited the code to make it work.
I think it is possible to do it in linear time, actually. Consider this code:
int a[10] = {4, 2, 6, 10, 5, 3, 7, 5, 4, 10};
int maxLength[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; // array of zeros
int n = 10; // size of the array;
int b = 0;
while (b != n) {
int e = b;
while (++e < n && a[b] < a[e]) {} //while the sequence is increasing, ++e
while (b != e) { maxLength[b++] = e-b-1; }
}
I got asked this question on a interview for Google a couple of weeks ago, I didn't quite get the answer and I was wondering if anyone here could help me out.
You have an array with n elements. The elements are either 0 or 1.
You want to split the array into k contiguous subarrays. The size of each subarray can vary between ceil(n/2k) and floor(3n/2k). You can assume that k << n.
After you split the array into k subarrays. One element of each subarray will be randomly selected.
Devise an algorithm for maximizing the sum of the randomly selected elements from the k subarrays.
Basically means that we will want to split the array in such way such that the sum of all the expected values for the elements selected from each subarray is maximum.
You can assume that n is a power of 2.
Example:
Array: [0,0,1,1,0,0,1,1,0,1,1,0]
n = 12
k = 3
Size of subarrays can be: 2,3,4,5,6
Possible subarrays [0,0,1] [1,0,0,1] [1,0,1,1,0]
Expected Value of the sum of the elements randomly selected from the subarrays: 1/3 + 2/4 + 3/5 = 43/30 ~ 1.4333333
Optimal split: [0,0,1,1,0,0][1,1][0,1,1,0]
Expected value of optimal split: 1/3 + 1 + 1/2 = 11/6 ~ 1.83333333
I think we can solve this problem using dynamic programming.
Basically, we have:
f(i,j) is defined as the maximum sum of all expected values chosen from an array of size i and split into j subarrays. Therefore the solution should be f(n,k).
The recursive equation is:
f(i,j) = f(i-x,j-1) + sum(i-x+1,i)/x where (n/2k) <= x <= (3n/2k)
I don't know if this is still an open question or not, but it seems like the OP has managed to add enough clarifications that this should be straightforward to solve. At any rate, if I am understanding what you are saying this seems like a fair thing to ask in an interview environment for a software development position.
Here is the basic O(n^2 * k) solution, which should be adequate for small k (as the interviewer specified):
def best_val(arr, K):
n = len(arr)
psum = [ 0.0 ]
for x in arr:
psum.append(psum[-1] + x)
tab = [ -100000 for i in range(n) ]
tab.append(0)
for k in range(K):
for s in range(n - (k+1) * ceil(n/(2*K))):
terms = range(s + ceil(n/(2*K)), min(s + floor((3*n)/(2*K)) + 1, n+1))
tab[s] = max( [ (psum[t] - psum[s]) / (t - s) + tab[t] for t in terms ])
return tab[0]
I used the numpy ceil/floor functions but you basically get the idea. The only `tricks' in this version is that it does windowing to reduce the memory overhead to just O(n) instead of O(n * k), and that it precalculates the partial sums to make computing the expected value for a box a constant time operation (thus saving a factor of O(n) from the inner loop).
I don't know if anyone is still interested to see the solution for this problem. Just stumbled upon this question half an hour ago and thought of posting my solution(Java). The complexity for this is O(n*K^log10). The proof is a little convoluted so I would rather provide runtime numbers:
n k time(ms)
48 4 25
48 8 265
24 4 20
24 8 33
96 4 51
192 4 143
192 8 343919
The solution is the same old recursive one where given an array, choose the first partition of size ceil(n/2k) and find the best solution recursively for the rest with number of partitions = k -1, then take ceil(n/2k) + 1 and so on.
Code:
public class PartitionOptimization {
public static void main(String[] args) {
PartitionOptimization p = new PartitionOptimization();
int[] input = { 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0};
int splitNum = 3;
int lowerLim = (int) Math.ceil(input.length / (2.0 * splitNum));
int upperLim = (int) Math.floor((3.0 * input.length) / (2.0 * splitNum));
System.out.println(input.length + " " + lowerLim + " " + upperLim + " " +
splitNum);
Date currDate = new Date();
System.out.println(currDate);
System.out.println(p.getMaxPartExpt(input, lowerLim, upperLim,
splitNum, 0));
System.out.println(new Date().getTime() - currDate.getTime());
}
public double getMaxPartExpt(int[] input, int lowerLim, int upperLim,
int splitNum, int startIndex) {
if (splitNum <= 1 && startIndex<=(input.length -lowerLim+1)){
double expt = findExpectation(input, startIndex, input.length-1);
return expt;
}
if (!((input.length - startIndex) / lowerLim >= splitNum))
return -1;
double maxExpt = 0;
double curMax = 0;
int bestI=0;
for (int i = startIndex + lowerLim - 1; i < Math.min(startIndex
+ upperLim, input.length); i++) {
double curExpect = findExpectation(input, startIndex, i);
double splitExpect = getMaxPartExpt(input, lowerLim, upperLim,
splitNum - 1, i + 1);
if (splitExpect>=0 && (curExpect + splitExpect > maxExpt)){
bestI = i;
curMax = curExpect;
maxExpt = curExpect + splitExpect;
}
}
return maxExpt;
}
public double findExpectation(int[] input, int startIndex, int endIndex) {
double expectation = 0;
for (int i = startIndex; i <= endIndex; i++) {
expectation = expectation + input[i];
}
expectation = (expectation / (endIndex - startIndex + 1));
return expectation;
}
}
Not sure I understand, the algorithm is to split the array in groups, right? The maximum value the sum can have is the number of ones. So split the array in "n" groups of 1 element each and the addition will be the maximum value possible. But it must be something else and I did not understand the problem, that seems too silly.
I think this can be solved with dynamic programming. At each possible split location, get the maximum sum if you split at that location and if you don't split at that point. A recursive function and a table to store history might be useful.
sum_i = max{ NumOnesNewPart/NumZerosNewPart * sum(NewPart) + sum(A_i+1, A_end),
sum(A_0,A_i+1) + sum(A_i+1, A_end)
}
This might lead to something...
I think its a bad interview question, but it is also an easy problem to solve.
Every integer contributes to the expected value with weight 1/s where s is the size of the set where it has been placed. Therefore, if you guess the sizes of the sets in your partition, you just need to fill the sets with ones starting from the smallest set, and then fill the remaining largest set with zeroes.
You can easily see then that if you have a partition, filled as above, where the sizes of the sets are S_1, ..., S_k and you do a transformation where you remove one item from set S_i and move it to set S_i+1, you have the following cases:
Both S_i and S_i+1 were filled with ones; then the expected value does not change
Both them were filled with zeroes; then the expected value does not change
S_i contained both 1's and 0's and S_i+1 contains only zeroes; moving 0 to S_i+1 increases the expected value because the expected value of S_i increases
S_i contained 1's and S_i+1 contains both 1's and 0's; moving 1 to S_i+1 increases the expected value because the expected value of S_i+1 increases and S_i remains intact
In all these cases, you can shift an element from S_i to S_i+1, maintaining the filling rule of filling smallest sets with 1's, so that the expected value increases. This leads to the simple algorithm:
Create a partitioning where there is a maximal number of maximum-size arrays and maximal number of minimum-size arrays
Fill the arrays starting from smallest one with 1's
Fill the remaining slots with 0's
How about a recursive function:
int BestValue(Array A, int numSplits)
// Returns the best value that would be obtained by splitting
// into numSplits partitions.
This in turn uses a helper:
// The additional argument is an array of the valid split sizes which
// is the same for each call.
int BestValueHelper(Array A, int numSplits, Array splitSizes)
{
int result = 0;
for splitSize in splitSizes
int splitResult = ExpectedValue(A, 0, splitSize) +
BestValueHelper(A+splitSize, numSplits-1, splitSizes);
if splitResult > result
result = splitResult;
}
ExpectedValue(Array A, int l, int m) computes the expected value of a split of A that goes from l to m i.e. (A[l] + A[l+1] + ... A[m]) / (m-l+1).
BestValue calls BestValueHelper after computing the array of valid split sizes between ceil(n/2k) and floor(3n/2k).
I have omitted error handling and some end conditions but those should not be too difficult to add.
Let
a[] = given array of length n
from = inclusive index of array a
k = number of required splits
minSize = minimum size of a split
maxSize = maximum size of a split
d = maxSize - minSize
expectation(a, from, to) = average of all element of array a from "from" to "to"
Optimal(a[], from, k) = MAX[ for(j>=minSize-1 to <=maxSize-1) { expectation(a, from, from+j) + Optimal(a, j+1, k-1)} ]
Runtime (assuming memoization or dp) = O(n*k*d)
I have two ordered lists of the same element type, each list having at most one element of each value (say ints and unique numbers), but otherwise with no restrictions (one may be a subset of the other, they may be completely disjunct, or share some elements but not others).
How do I efficiently determine if A is ordering any two items in a different way than B is? For example, if A has the items 1, 2, 10 and B the items 2, 10, 1, the property would not hold as A lists 1 before 10 but B lists it after 10. 1, 2, 10 vs 2, 10, 5 would be perfectly valid however as A never mentions 5 at all, I cannot rely on any given sorting rule shared by both lists.
You can get O(n) as follows. First, find the intersection of the two sets using hashing. Second, test whether A and B are identical if you only consider elements from the intersection.
My approach would be to first make sorted copies of A and B which also record the positions of elements in the original lists:
for i in 1 .. length(A):
Apos[i] = (A, i)
sortedApos = sort(Apos[] by first element of each pair)
for i in 1 .. length(B):
Bpos[i] = (B, i)
sortedBpos = sort(Bpos[] by first element of each pair)
Now find those elements in common using a standard list merge that records the positions in both A and B of the shared elements:
i = 1
j = 1
shared = []
while i <= length(A) && j <= length(B)
if sortedApos[i][1] < sortedBpos[j][1]
++i
else if sortedApos[i][1] > sortedBpos[j][1]
++j
else // They're equal
append(shared, (sortedApos[i][2], sortedBpos[j][2]))
++i
++j
Finally, sort shared by its first element (position in A) and check that all its second elements (positions in B) are increasing. This will be the case iff the elements common to A and B appear in the same order:
sortedShared = sort(shared[] by first element of each pair)
for i = 2 .. length(sortedShared)
if sortedShared[i][2] < sortedShared[i-1][2]
return DIFFERENT
return SAME
Time complexity: 2*(O(n) + O(nlog n)) + O(n) + O(nlog n) + O(n) = O(nlog n).
General approach: store all the values and their positions in B as keys and values in a HashMap. Iterate over the values in A and look them up in B's HashMap to get their position in B (or null). If this position is before the largest position value you've seen previously, then you know that something in B is in a different order than A. Runs in O(n) time.
Rough, totally untested code:
boolean valuesInSameOrder(int[] A, int[] B)
{
Map<Integer, Integer> bMap = new HashMap<Integer, Integer>();
for (int i = 0; i < B.length; i++)
{
bMap.put(B[i], i);
}
int maxPosInB = 0;
for (int i = 0; i < A.length; i++)
{
if(bMap.containsKey(A[i]))
{
int currPosInB = bMap.get(A[i]);
if (currPosInB < maxPosInB)
{
// B has something in a different order than A
return false;
}
else
{
maxPosInB = currPosInB;
}
}
}
// All of B's values are in the same order as A
return true;
}
I've been going through Skiena's excellent "The Algorithm Design Manual" and got hung up on one of the exercises.
The question is:
"Given a search string of three words, find the smallest snippet of the document that contains all three of the search words—i.e. , the snippet with smallest number of words in it. You are given the index positions where these words in occur search strings, such as word1: (1, 4, 5), word2: (4, 9, 10), and word3: (5, 6, 15). Each of the lists are in sorted order, as above."
Anything I come up with is O(n^2)... This question is in the "Sorting and Searching" chapter, so I assume there is a simple and clever way to do it. I'm trying something with graphs right now, but that seems like overkill.
Ideas?
Thanks
Unless I've overlooked something, here's a simple, O(n) algorithm:
We'll represent the snippet by (x, y) where x and y are where the snippet begins and ends respectively.
A snippet is feasible if it contains all 3 search words.
We will start with the infeasible snippet (0,0).
Repeat the following until y reaches end-of-string:
If the current snippet (x, y) is feasible, proceed to the snippet (x+1, y)
Else (the current snippet is infeasible) proceed to the snippet (x, y+1)
Choose the shortest snippet among all feasible snippets we went through.
Running time - in each iteration either x or y is increased by 1, clearly x can't exceed y and y can't exceed string length so total number of iterations is O(n). Also, feasibility can be checked at O(1) in this case since we can track how many occurences of each word are within the current snippet. We can maintain this count at O(1) with each increase of x or y by 1.
Correctness - For each x, we calculate the minimal feasible snippet (x, ?). Thus we must go over the minimal snippet. Also, if y is the smallest y such that (x, y) is feasible then if (x+1, y') is a feasible snippet y' >= y (This bit is why this algorithm is linear and the others aren't).
I already posted a rather straightforward algorithm that solves exactly that problem in this answer
Google search results: How to find the minimum window that contains all the search keywords?
However, in that question we assumed that the input is represented by a text stream and the words are stored in an easily searchable set.
In your case the input is represented slightly differently: as a bunch of vectors with sorted positions for each word. This representation is easily transformable to what is needed for the above algorithm by simply merging all these vectors into a single vector of (position, word) pairs ordered by position. It can be done literally, or it can be done "virtually", by placing the original vectors into the priority queue (ordered in accordance with their first elements). Popping an element from the queue in this case means popping the first element from the first vector in the queue and possibly sinking the first vector into the queue in accordance with its new first element.
Of course, since your statement of the problem explicitly fixes the number of words as three, you can simply check the first elements of all three arrays and pop the smallest one at each iteration. That gives you a O(N) algorithm, where N is the total length of all arrays.
Also, your statement of the problem seems to suggest that target words can overlap in the text, which is rather strange (given that you use the term "word"). Is it intentional? In any case, it doesn't present any problem for the above linked algorithm.
From the question, it seems that you're given the index locations for each of your n “search words” (word1, word2, word3, ..., word n) in the document. Using a sorting algorithm, the n independent arrays associated with search words can readily be represented as a single array of all the index locations in ascending numerical order and a word label associated with each index in the array (the index array).
The Basic Algorithm:
(Designed to work whether or not the poster of this question intended to allow two different search words to coexist at the same index number.)
First, we define a simple function for measuring the length of a snippet that contains all n labels given a starting point in the index array. (It is obvious from the definition of our array that any starting point on the array will necessarily be the indexed location of one of the n search labels.) The function simply keeps track of the unique search labels seen as the function iterates through the elements in the array until all n labels have been observed. The length of the snippet is defined as the difference between the index of the last unique label found and the index of the starting point in the index array (the first unique label found). If all n labels aren't observed before the end of the array the function returns a null value.
Now, the snippet length function can be run for each element in your array to associate a snippet size containing all n search words starting from each element in the array. The smallest non-Null value returned by the snippet length function over the whole index array is the snippet in your document that you're looking for.
Necessary Optimizations:
Keep track of the value of the current shortest snippet length so that the value will be know immediately after iterating once through the index array.
When iterating through your array terminate the snippet length function if the current snippet under inspection ever surpasses the length of the shortest snippet length previously seen.
When the snippet length function returns null for not locating all n search words in the remaining index array elements, associate a null snippet length to all successive elements in the index array.
If the snippet length function is applied to a word label and the label immediately following it is identical to the starting label, assign a null value to the starting label and move on to the next label.
Computational Complexity:
Obviously the sorting part of the algorithm can be arranged in O(n log n).
Here's how I would work out the time complexity of the second part of the algorithm (any critiques and corrections would be greatly appreciated).
In the best case scenario, the algorithm only applies the snippet length function to the first element in the index array and finds that no snippet containing all the search words exists. This scenario would be computed in just n calculations where n is the size of the index array. Slightly worse than that is if the smallest snippet turns out to be equal to the size of the whole array. In this case the computational complexity will be a little less than 2 n (once through the array to find the smallest snippet length, a second time to demonstrate that no other snippets exist). The shorter the average computed snippet length, the more times the snippet length function will need to be applied over the index array. We can assume that our worse case scenario will be the case where the snippet length function needs to be applied to every element in the index array. To develop a case where the function will be applied to every element in the index array we need to design an index array where the average snippet length over the whole index array is negligible in comparison to the size of the index array as a whole. Using this case we can write out our computational complexity as O(C n) where C is some constant that is significantly smaller then n. Giving a final computational complexity of:
O(n log n + C n)
Where:
C << n
Edit:
AndreyT correctly points out that instead of sorting the word indicies in n log n time, one might just as well merge them (since the sub arrays are already sorted) in n log m time where m is the amount of search word arrays to be merged. This will obviously speed up the algorithm is cases where m < n.
O(n log k) solution, where n is the total number of indices and k is the number of words. The idea is to use a heap to identify the smallest index at each iteration, while also keeping track of the maximum index in the heap. I also put the coordinates of each value in the heap, in order to be able to retrieve the next value in constant time.
#include <algorithm>
#include <cassert>
#include <limits>
#include <queue>
#include <vector>
using namespace std;
int snippet(const vector< vector<int> >& index) {
// (-index[i][j], (i, j))
priority_queue< pair< int, pair<size_t, size_t> > > queue;
int nmax = numeric_limits<int>::min();
for (size_t i = 0; i < index.size(); ++i) {
if (!index[i].empty()) {
int cur = index[i][0];
nmax = max(nmax, cur);
queue.push(make_pair(-cur, make_pair(i, 0)));
}
}
int result = numeric_limits<int>::max();
while (queue.size() == index.size()) {
int nmin = -queue.top().first;
size_t i = queue.top().second.first;
size_t j = queue.top().second.second;
queue.pop();
result = min(result, nmax - nmin + 1);
j++;
if (j < index[i].size()) {
int next = index[i][j];
nmax = max(nmax, next);
queue.push(make_pair(-next, make_pair(i, j)));
}
}
return result;
}
int main() {
int data[][3] = {{1, 4, 5}, {4, 9, 10}, {5, 6, 15}};
vector<vector<int> > index;
for (int i = 0; i < 3; i++) {
index.push_back(vector<int>(data[i], data[i] + 3));
}
assert(snippet(index) == 2);
}
Sample implementation in java (tested only with the implementation in the example, there might be bugs). The implementation is based on the replies above.
import java.util.Arrays;
public class SmallestSnippet {
WordIndex[] words; //merged array of word occurences
public enum Word {W1, W2, W3};
public SmallestSnippet(Integer[] word1, Integer[] word2, Integer[] word3) {
this.words = new WordIndex[word1.length + word2.length + word3.length];
merge(word1, word2, word3);
System.out.println(Arrays.toString(words));
}
private void merge(Integer[] word1, Integer[] word2, Integer[] word3) {
int i1 = 0;
int i2 = 0;
int i3 = 0;
int wordIdx = 0;
while(i1 < word1.length || i2 < word2.length || i3 < word3.length) {
WordIndex wordIndex = null;
Word word = getMin(word1, i1, word2, i2, word3, i3);
if (word == Word.W1) {
wordIndex = new WordIndex(word, word1[i1++]);
}
else if (word == Word.W2) {
wordIndex = new WordIndex(word, word2[i2++]);
}
else {
wordIndex = new WordIndex(word, word3[i3++]);
}
words[wordIdx++] = wordIndex;
}
}
//determine which word has the smallest index
private Word getMin(Integer[] word1, int i1, Integer[] word2, int i2, Integer[] word3,
int i3) {
Word toReturn = Word.W1;
if (i1 == word1.length || (i2 < word2.length && word2[i2] < word1[i1])) {
toReturn = Word.W2;
}
if (toReturn == Word.W1 && i3 < word3.length && word3[i3] < word1[i1])
{
toReturn = Word.W3;
}
else if (toReturn == Word.W2){
if (i2 == word2.length || (i3 < word3.length && word3[i3] < word2[i2])) {
toReturn = Word.W3;
}
}
return toReturn;
}
private Snippet calculate() {
int start = 0;
int end = 0;
int max = words.length;
Snippet minimum = new Snippet(words[0].getIndex(), words[max-1].getIndex());
while (start < max)
{
end = start;
boolean foundAll = false;
boolean found[] = new boolean[Word.values().length];
while (end < max && !foundAll) {
found[words[end].getWord().ordinal()] = true;
boolean complete = true;
for (int i=0 ; i < found.length && complete; i++) {
complete = found[i];
}
if (complete)
{
foundAll = true;
}
else {
if (words[end].getIndex()-words[start].getIndex() == minimum.getLength())
{
// we won't find a minimum no need to search further
break;
}
end++;
}
}
if (foundAll && words[end].getIndex()-words[start].getIndex() < minimum.getLength()) {
minimum.setEnd(words[end].getIndex());
minimum.setStart(words[start].getIndex());
}
start++;
}
return minimum;
}
/**
* #param args
*/
public static void main(String[] args) {
Integer[] word1 = {1,4,5};
Integer[] word2 = {3,9,10};
Integer[] word3 = {2,6,15};
SmallestSnippet smallestSnippet = new SmallestSnippet(word1, word2, word3);
Snippet snippet = smallestSnippet.calculate();
System.out.println(snippet);
}
}
Helper classes:
public class Snippet {
private int start;
private int end;
//getters, setters etc
public int getLength()
{
return Math.abs(end - start);
}
}
public class WordIndex
{
private SmallestSnippet.Word word;
private int index;
public WordIndex(SmallestSnippet.Word word, int index) {
this.word = word;
this.index = index;
}
}
The other answers are alright, but like me, if you're having trouble understanding the question in the first place, those aren't really helpful. Let's rephrase the question:
Given three sets of integers (call them A, B, and C), find the minimum contiguous range that contains one element from each set.
There is some confusion about what the three sets are. The 2nd edition of the book states them as {1, 4, 5}, {4, 9, 10}, and {5, 6, 15}. However, another version that has been stated in a comment above is {1, 4, 5}, {3, 9, 10}, and {2, 6, 15}. If one word is not a suffix/prefix of another, version 1 isn't possible, so let's go with the second one.
Since a picture is worth a thousand words, lets plot the points:
Simply inspecting the above visually, we can see that there are two answers to this question: [1,3] and [2,4], both of size 3 (three points in each range).
Now, the algorithm. The idea is to start with the smallest valid range, and incrementally try to shrink it by moving the left boundary inwards. We will use zero-based indexing.
MIN-RANGE(A, B, C)
i = j = k = 0
minSize = +∞
while i, j, k is a valid index of the respective arrays, do
ans = (A[i], B[j], C[k])
size = max(ans) - min(ans) + 1
minSize = min(size, minSize)
x = argmin(ans)
increment x by 1
done
return minSize
where argmin is the index of the smallest element in ans.
+---+---+---+---+--------------------+---------+
| n | i | j | k | (A[i], B[j], C[k]) | minSize |
+---+---+---+---+--------------------+---------+
| 1 | 0 | 0 | 0 | (1, 3, 2) | 3 |
+---+---+---+---+--------------------+---------+
| 2 | 1 | 0 | 0 | (4, 3, 2) | 3 |
+---+---+---+---+--------------------+---------+
| 3 | 1 | 0 | 1 | (4, 3, 6) | 4 |
+---+---+---+---+--------------------+---------+
| 4 | 1 | 1 | 1 | (4, 9, 6) | 6 |
+---+---+---+---+--------------------+---------+
| 5 | 2 | 1 | 1 | (5, 9, 6) | 5 |
+---+---+---+---+--------------------+---------+
| 6 | 3 | 1 | 1 | | |
+---+---+---+---+--------------------+---------+
n = iteration
At each step, one of the three indices is incremented, so the algorithm is guaranteed to eventually terminate. In the worst case, i, j, and k are incremented in that order, and the algorithm runs in O(n^2) (9 in this case) time. For the given example, it terminates after 5 iterations.
O(n)
Pair find(int[][] indices) {
pair.lBound = max int;
pair.rBound = 0;
index = 0;
for i from 0 to indices.lenght{
if(pair.lBound > indices[i][0]){
pair.lBound = indices[i][0]
index = i;
}
if(indices[index].lenght > 0)
pair.rBound = max(pair.rBound, indices[i][0])
}
remove indices[index][0]
return min(pair, find(indices)}