choosing row m from two matrices at random - random

I have two m*n matrices, A and P. I want to randomly choose the same 3 rows from both matrices, e.g. rows m, m+1, m+2 are picked from both matrices. I want to be able to make the calculation U=A-P on the selected subset (i.e. Usub-Psub), rather than before the selection. So far I have only been able to select rows from one matrix, without being able to match it to the other. The code I use for this is:
A=[0,1,1,3,2,4,4,5;0,2,1,1,3,3,5,5;0,3,1,1,4,4,2,5;0,1,1,1,2,2,5,5]
P=[0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0]
U=A-P
k = randperm(size(U,1));
Usub = U(k(1:3),:);

I would first create a function that returned a submatrix that had only three rows in it that takes an integer as the first of the three row. Then i'd do something like this:
m = number of rows;
randomRow = rand() % m;
U = A.sub(randomRow) - P.sub(randomRow);

Related

A greedy solution for a matrix rearrangment

I am working on something which I feel an NP-hard problem. So, I am not looking for the optimal solution but I am looking for a better heuristics. An integer input matrix (matrix A in the following example) is given as input and I have to produce an integer output matrix (matrix B in the following example) whose number of rows are smaller than the input matrix and should obey the following two conditions:
1) Each column of the output matrix should contain integers in the same order as they appear in the input matrix. (In the example below, first column of the matrix A and matrix B have the same integers 1,3 in the same order.)
2) Same integers must not appear in the same row (In the example below, first row of the matrix B contains the integers 1,3 and 2 which are different from each other.)
Note that the input matrix always obey the 2nd condition.
What a greedy algorithm looks like to solve this problem?
Example:
In this example the output matrix 'Matrix B' contains all the integers as they appear in the input matrix 'Matrix A" but the output matrix has 5 rows and the input matrix has 6 rows. So, the output 'Matrix B' is a valid solution of the input 'Matrix A'.
I would produce the output one row at a time. When working out what to put in the row I would consider the next number from each input column, starting from the input column which has the most numbers yet to be placed, and considering the columns in decreasing order of numbers yet to be placed. Where a column can put a number in the current output row when its turn comes up it should do so.
You could extend this to a branch and bound solution to find the exact best answer. Recursively try all possible rows at each stage, except when you can see that the current row cannot possibly improve on the best answer so far. You know that if you have a column with k entries yet to be placed, in the best possible case you will need at least k more rows.
In practice I would expect that this will be too expensive to be practical, so you will need to ignore some possible rows which you cannot rule out, and so cannot guarantee to find the best answer. You could try using a heuristic search such as Limited Discrepancy search.
Another non-exact speedup is to multiply the estimate for the number of rows that the best possible answer derived from a partial solution will require by some factor F > 1. This will allow you to rule out some solutions earlier than branch and bound. The answer you find can be no more than F times more expensive than the best possible answer, because you only discard possibilities that cannot improve on the current answer by more than a factor of F.
A greedy solution to this problem would involve placing the numbers column by column, top down, as they appear.
Pseudocode:
For each column c in A:
r = 0 // row index of next element in A
nextRow = 0 // row index of next element to be placed in B
while r < A.NumRows()
while r < A.NumRows() && A[r, c] is null:
r++ // increment row to check in A
if r < A.NumRows() // we found a non-null entry in A
while nextRow < A.NumRows() && ~CheckConstraints(A[r,c], B[nextRow, c]):
nextRow++ // increment output row in B
if 'nextRow' >= A.NumRows()
return unsolvable // couldn't find valid position in B
B[nextRow, c] = v // successfully found position in B
++nextRow // increment output row in B
If there are no conflicts you end up "packing" B as tightly as possible. Otherwise you greedily search for the next non-conflicting row position in B. If none can be found, the problem is unsolvable.
The helper function CheckConstraints checks backwards in columns for the same row value in B to ensure the same value hasn't already been placed in a row.
If the problem statement is relaxed such that the output row count in B is <= the row count in A, then if we are unable to pack B any tighter, then we can return A as a solution.

Matrix reordering to block diagonal form

Give a sparse matrix, how to reorder the rows and columns such that it is in block diagonal like form via row and column permutation?
Row and column permutation are not necessarily coupled like reverse Cuthill-McKee ordering:
http://www.mathworks.com/help/matlab/ref/symrcm.html?refresh=true In short, you can independently perform any row or column permutation.
The overall goal is to cluster all the non zero elements towards diagonal line.
Here is one approach.
First make a graph whose vertices are rows and columns. Every non-zero value is a edge between that row and that column.
You can then use a standard graph theory algorithm to detect the connected components of this graph. The single element ones represent all zero rows and columns. Number the others. Those components may have unequal numbers of rows and columns. You can distribute some zero rows and columns to them to make them square.
Your square components will be your blocks, and from the numbering of those components you know what order to put them in. Now just reorder rows and columns to achieve this structure and, voila! (The remaining zero rows/columns will result in a bunch of 0 blocks at the bottom right of the diagonal.)
Just an idea, but if you make a new matrix Ab from the original block-matrix A that contains the block-sparsity structure of A. E.g.:
A = [B 0 0; 0 0 C; 0 D 0]; % with matrices 0 (zero elements), B,C and D
Ab = [1 0 0; 0 0 2; 0 3 0]; % with identifiers 1, 2 and 3 (1-->B, 2-->C, 3-->D)
Then Ab is a simple sparse matrix (size 3x3 in the example). You can then use the reverse Cuthill-McKee ordering to get the permutations you want, and apply these permutations to Ab.
p = symrcm(Ab);
Abperm = Ab(p,p);
Then use the identifiers to create the ordered block matrix Aperm from Abperm and you'll have the desired result, I believe.
You'll need to be clever in assigning the identifiers to the individual blocks and so on, but this should be possible.

Best way to make a random matrix subject to full rank

I want to make a matrix k x n (k rows and n columns) that its rank is k. My idea is that I will check the current rank of matrix at each generation of column. If the current rank is small than number of current column j, I will make the column again until the rank equals current column. This is my code. However, it work very slowly (due to check rank at every step). Please help me to modify it.
function G=fullRank(k,n)
%% make matrix kxn
j=0;
while(j<n)
d=randi(k,1)
column = [ones(1,d) zeros(1,k-d)];
column = column(randperm(k));
G(:,j)=column';
%% check full rank- Modify here
if((j>=2)&(rank(full(G))<j)&&(j<=k))
%% Set current column of G to zeros
column =zeros(1,k);
G(:,j) = column';
else
j=j+1;
end
end
The probability of your matrix not being full-rank depends on how you choose the random values for its entries, but I guess it is low. In that case, you can save time checking only at the end, and generating the full matrix again if needed:
maxrank = min(k,n); %// precompute to save a little time
G = []; %// this is just to enter the while loop at least once
while rank(G)<maxrank
G = randi(k,k,n); %// replace by your procedure to generate G
end

What is the fast way to calculate this summation in MATLAB?

So I have the following constraints:
How to write this in MATLAB in an efficient way? The inputs are x_mn, M, and N. The set B={1,...,N} and the set U={1,...,M}
I did it like this (because I write x as the follwoing vector)
x=[x_11, x_12, ..., x_1N, X_21, x_22, ..., x_M1, X_M2, ..., x_MN]:
%# first constraint
function R1 = constraint_1(M, N)
ee = eye(N);
R1 = zeros(N, N*M);
for m = 1:M
R1(:, (m-1)*N+1:m*N) = ee;
end
end
%# second constraint
function R2 = constraint_2(M, N)
ee = ones(1, N);
R2 = zeros(M, N*M);
for m = 1:M
R2(m, (m-1)*N+1:m*N) = ee;
end
end
By the above code I will get a matrix A=[R1; R2] with 0-1 and I will have A*x<=1.
For example, M=N=2, I will have something like this:
And, I will create a function test(x) which returns true or false according to x.
I would like to get some help from you and optimize my code.
You should place your x_mn values in a matrix. After that, you can sum in each dimension to get what you want. Looking at your constraints, you will place these values in an M x N matrix, where M is the amount of rows and N is the amount of columns.
You can certainly place your values in a vector and construct your summations in the way you intended earlier, but you would have to write for loops to properly subset the proper elements in each iteration, which is very inefficient. Instead, use a matrix, and use sum to sum over the dimensions you want.
For example, let's say your values of x_mn ranged from 1 to 20. B is in the set from 1 to 5 and U is in the set from 1 to 4. As such:
X = vec2mat(1:20, 5)
X =
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
vec2mat takes a vector and reshapes it into a matrix. You specify the number of columns you want as the second element, and it will create the right amount of rows to ensure that a proper matrix is built. In this case, I want 5 columns, so this should create a 4 x 5 matrix.
The first constraint can be achieved by doing:
first = sum(X,1)
first =
34 38 42 46 50
sum works for vectors as well as matrices. If you have a matrix supplied to sum, you can specify a second parameter that tells you in what direction you wish to sum. In this case, specifying 1 will sum over all of the rows for each column. It works in the first dimension, which is the rows.
What this is doing is it is summing over all possible values in the set B over all values of U, which is what we are exactly doing here. You are simply summing every single column individually.
The second constraint can be achieved by doing:
second = sum(X,2)
second =
15
40
65
90
Here we specify 2 as the second parameter so that we can sum over all of the columns for each row. The second dimension goes over the columns. What this is doing is it is summing over all possible values in the set U over all values of B. Basically, you are simply summing every single row individually.
BTW, your code is not achieving what you think it's achieving. All you're doing is simply replicating the identity matrix a set number of times over groups of columns in your matrix. You are actually not performing any summations as per the constraint. What you are doing is you are simply ensuring that this matrix will have the conditions you specified at the beginning of your post to be enforced. These are the ideal matrices that are required to satisfy the constraints.
Now, if you want to check to see if the first condition or second condition is satisfied, you can do:
%// First condition satisfied?
firstSatisfied = all(first <= 1);
%// Second condition satisfied
secondSatisfied = all(second <= 1);
This will check every element of first or second and see if the resulting sums after you do the above code that I just showed are all <= 1. If they all satisfy this constraint, we will have true. Else, we have false.
Please let me know if you need anything further.

mathematica help ~ assign each element in a matrix to a value from a column vector

I have this 4x4 square matrix A, which has a random value in each element. I now have a column matrix (16x1) B which also has random values. The number of values in B is 16 which corresponds to the total number of elements in A.
I am trying to assign the values in B to elements in matrix A in the following way:
A[[1,1]] = B[[1]],
A[[1,2]] = B[[2]],
A[[1,3]] = B[[3]],
A[[1,4]] = B[[4]],
A[[2,1]] = B[[5]],
A[[2,2]] = B[[6]],
A[[2,3]] = B[[7]],
A[[2,4]] = B[[8]],
etc...
Does anyone know a convenient way of doing this so that I can achieve this for any NxN square matrix, and any length M column matrix(Mx1 matrix)? Assuming of course that the total # of elements are the same in both matrices.
If you have Mathematica 9, the function ArrayReshape can turn your list B into an arbitrary m x n Matrix.

Resources