What is the fast way to calculate this summation in MATLAB? - performance

So I have the following constraints:
How to write this in MATLAB in an efficient way? The inputs are x_mn, M, and N. The set B={1,...,N} and the set U={1,...,M}
I did it like this (because I write x as the follwoing vector)
x=[x_11, x_12, ..., x_1N, X_21, x_22, ..., x_M1, X_M2, ..., x_MN]:
%# first constraint
function R1 = constraint_1(M, N)
ee = eye(N);
R1 = zeros(N, N*M);
for m = 1:M
R1(:, (m-1)*N+1:m*N) = ee;
end
end
%# second constraint
function R2 = constraint_2(M, N)
ee = ones(1, N);
R2 = zeros(M, N*M);
for m = 1:M
R2(m, (m-1)*N+1:m*N) = ee;
end
end
By the above code I will get a matrix A=[R1; R2] with 0-1 and I will have A*x<=1.
For example, M=N=2, I will have something like this:
And, I will create a function test(x) which returns true or false according to x.
I would like to get some help from you and optimize my code.

You should place your x_mn values in a matrix. After that, you can sum in each dimension to get what you want. Looking at your constraints, you will place these values in an M x N matrix, where M is the amount of rows and N is the amount of columns.
You can certainly place your values in a vector and construct your summations in the way you intended earlier, but you would have to write for loops to properly subset the proper elements in each iteration, which is very inefficient. Instead, use a matrix, and use sum to sum over the dimensions you want.
For example, let's say your values of x_mn ranged from 1 to 20. B is in the set from 1 to 5 and U is in the set from 1 to 4. As such:
X = vec2mat(1:20, 5)
X =
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
vec2mat takes a vector and reshapes it into a matrix. You specify the number of columns you want as the second element, and it will create the right amount of rows to ensure that a proper matrix is built. In this case, I want 5 columns, so this should create a 4 x 5 matrix.
The first constraint can be achieved by doing:
first = sum(X,1)
first =
34 38 42 46 50
sum works for vectors as well as matrices. If you have a matrix supplied to sum, you can specify a second parameter that tells you in what direction you wish to sum. In this case, specifying 1 will sum over all of the rows for each column. It works in the first dimension, which is the rows.
What this is doing is it is summing over all possible values in the set B over all values of U, which is what we are exactly doing here. You are simply summing every single column individually.
The second constraint can be achieved by doing:
second = sum(X,2)
second =
15
40
65
90
Here we specify 2 as the second parameter so that we can sum over all of the columns for each row. The second dimension goes over the columns. What this is doing is it is summing over all possible values in the set U over all values of B. Basically, you are simply summing every single row individually.
BTW, your code is not achieving what you think it's achieving. All you're doing is simply replicating the identity matrix a set number of times over groups of columns in your matrix. You are actually not performing any summations as per the constraint. What you are doing is you are simply ensuring that this matrix will have the conditions you specified at the beginning of your post to be enforced. These are the ideal matrices that are required to satisfy the constraints.
Now, if you want to check to see if the first condition or second condition is satisfied, you can do:
%// First condition satisfied?
firstSatisfied = all(first <= 1);
%// Second condition satisfied
secondSatisfied = all(second <= 1);
This will check every element of first or second and see if the resulting sums after you do the above code that I just showed are all <= 1. If they all satisfy this constraint, we will have true. Else, we have false.
Please let me know if you need anything further.

Related

MATLAB - Permutations of random indices in specific areas of a grid

I have a problem in which I have 4 objects (1s) on a 100x100 grid of zeros that is split up into 16 even squares of 25x25.
I need to create a (16^4 * 4) table where entries listing all the possible positions of each of these 4 objects across the 16 submatrices. The objects can be anywhere within the submatrices so long as they aren't overlapping one another. This is clearly a permutation problem, but there is added complexity because of the indexing and the fact that the positions ned to be random but not overlapping within a 16th square. Would love any pointers!
What I tried to do was create a function called "top_left_corner(position)" that returns the subscript of the top left corner of the sub-matrix you are in. E.g. top_left_corner(1) = (1,1), top_left_corner(2) = (26,1), etc. Then I have:
pos = randsample(24,2);
I = pos(1)+top_left_corner(position,1);
J = pos(2)+top_left_corner(position,2);
The problem is how to generate and store permutations of this in a table as linear indices.
First using ndgrid cartesian product generated in the form of a [4 , 16^4] matrix perm. Then in the while loop random numbers generated and added to perm. If any column of perm contains duplicated random numbers ,random number generation repeated for those columns until no column has duplicated elements.Normally no more than 2-3 iterations needed. Since the [100 ,100] array divided into 16 blocks, using kron an index pattern like the 16 blocks generated and with the sort function indexes of sorted elements extracted. Then generated random numbers form indexes of the pattern( 16 blocks).
C = cell(1,4);
[C{:}]=ndgrid(0:15,0:15,0:15,0:15);
perm = reshape([C{:}],16^4,4).';
perm_rnd = zeros(size(perm));
c = 1:size(perm,2);
while true
perm_rnd(:,c) = perm(:,c) * 625 +randi(625,4,numel(c));
[~ ,c0] = find(diff(sort(perm_rnd(:,c),1),1,1)==0);
if isempty(c0)
break;
end
%c = c(unique(c0));
c = c([true ; diff(c0)~=0]);
end
pattern = kron(reshape(1:16,4,4),ones(25));
[~,idx] = sort(pattern(:));
result = idx(perm_rnd).';

How to get histogram data object from matlab

Lets say I have a matrix x=[ 1 2 1 2 1 2 1 2 3 4 5 ]. To look at its histogram, I can do h=hist(x).
Now, h with retrieve a matrix consisting only the number of occurrences and does not store the original value to which it occurred.
What I want is something like a function which takes a value from x and returns number of occurrences of it. Having said that, what one thing histeq does should we admire is, it automatically scales nearest values according!
How should solve this issue? How exactly people do it?
My reason of interest is in images:
Lets say I have an image. I want to find all number of occurrences of a chrominance value of image.
I'm not really shure what you are looking for, but if you ant to use hist to count the number of occurences, use:
[h,c]=hist(x,sort(unique(x)))
Otherwise hist uses ranges defined by centers. The second output argument returns the corresponding number.
hist has a second return value that will be the bin centers xc corresponding to the counts n returned in form of the first return value: [n, xc] = hist(x). You should have a careful look at the reference which describes a large number of optional arguments that control the behavior of hist. However, hist is way too mighty for your specific problem.
To simply count the number of occurrences of a specific value, you could simply use something like sum(x(:) == 42). The colon operator will linearize your image matrix, the equals operator will yield a list of boolean values with 1 for each element of x that was 42, and thus sum will yield the total number of these occurrences.
An alternative to hist / histc is to use bsxfun:
n = unique(x(:)).'; %'// values contained in x. x can have any number of dims
y = sum(bsxfun(#eq, x(:), n)); %// count for each value

octave matrix for loop performance

I am new to Octave. I have two matrices. I have to compare a particular column of a one matrix with the other(my matrix A is containing more than 5 variables, similarly matrix B is containing the same.) and if elements in column one of matrix A is equal to elements in the second matrix B then I have to use the third column of second matrix B to compute certain values.I am doing this with octave by using for loop , but it consumes a lot of time to do the computation for single day , i have to do this for a year . Because size of matrices is very large.Please suggest some alternative way so that I can reduce my time and computation.
Thank you in advance.
Thanks for your quick response -hfs
continuation of the same problem,
Thank u, but this will work only if both elements in both the rows are equal.For example my matrices are like this,
A=[1 2 3;4 5 6;7 8 9;6 9 1]
B=[1 2 4; 4 2 6; 7 5 8;3 8 4]
here column 1 of first element of A is equal to column 1 of first element of B,even the second column hence I can take the third element of B, but for the second element of column 1 is equal in A and B ,but second element of column 2 is different ,here it should search for that element and print the element in the third column,and am doing this with for loop which is very slow because of larger dimension.In mine actual problem I have given for loop as written below:
for k=1:37651
for j=1:26018
if (s(k,1:2)==l(j,1:2))
z=sin((90-s(k,3))*pi/180) , break ,end
end
end
I want an alternative way to do this which should be faster than this.
You should work with complete matrices or vectors whenever possible. You should try commands and inspect intermediate results in the interactive shell to see how they fit together.
A(:,1)
selects the first column of a matrix. You can compare matrices/vectors and the result is a matrix/vector of 0/1 again:
> A(:,1) == B(:,1)
ans =
1
1
0
If you assign the result you can use it again to index into matrices:
I = A(:,1) == B(:,1)
B(I, 3)
This selects the third column of B of those rows where the first column of A and B is equal.
I hope this gets you started.

How to balance the number of items across multiple columns

I need to find out a method to determine how many items should appear per column in a multiple column list to achieve the most visual balance. Here are my criteria:
The list should only be split into multiple columns if the item count is greater than 10.
If multiple columns are required, they should contain no less than 5 (except for the last column in case of a remainder) and no more than 10 items.
If all columns cannot contain an equal number of items
All but the last column should be equal in number.
The number of items in each column should be optimized to achieve the smallest difference between the last column and the other column(s).
Well, your requirements and your examples appear a bit contradictory. For instance, your second example could be divided into two columns with 11 items in each, and satisfy your criteria. Let's assume that for rule #2 you meant that there should be <= 10 items / column.
In addition, I think you need to add another rule to make the requirements sensible:
The number of columns must not be greater than what is required to accomodate overflow.
Otherwise, you will often end up with degenerate solutions where you have far more columns than you need. For example, in the case of 26 items you probably don't want 13 columns of 2 items each.
If that's case, here's a simple calculation that should work well and is easy to understand:
int numberOfColumns = CEILING(numberOfItems / 10);
int numberOfItemsPerColumn = CEILING(numberOfItems / numberOfColumns);
Now you'll create N-1 columns of items (having `numberOfItemsPerColumn each) and the overflow will go in the last column. By this definition, the overflow should be minimized in the last column.
If you want to automatically determine the appropriate number of columns, and have no restrictions on its limits, I would suggest the following:
Calculate the square root of the total number of items. That would make an squared layout.
Divide that number by 1.618, and assign that to the total number of rows.
Multiply that same number by 1.618, and assign that to the total number of columns.
All columns but the right most one will have the same number of items.
By the way, the constant 1.618 is the Golden Ratio. That will achieve a more pleasant layout than a squared one.
Divide and multiply the other way round for vertical displays.
Hope this algorithm helps anyone with a similar problem.
Here's what you're trying to solve:
minimize y - z where n = xy + z and 5 <= y <= 10 and 0 <= z <= y
where you have n items split into x full columns of y items and one remainder column of z items.
There is almost certainly a smart way of doing this, but given these constraints a brute force implementation exploring all 6 + 7 + 8 + 9 + 10 = 40 possible combinations for y and z would take no time at all (only assignments where (n - z) mod y = 0 are solutions).
I think a brute force solution is easy, given the constraint on the number of items per columns: let v be the number of items per column (except the last one), then v belongs to [5,10] and can thus take a whooping 6 different values.
Evaluating 6 values is easy enough. Python one-liner (or not so far) to prove it:
# compute the difference between the number of items for the normal columns
# and for the last column, lesser is better
def helper(n,v):
modulo = n % v
if modulo == 0: return 0
else: return v - modulo
# values can only be in [5,10]
# we compute the difference with the last column for each
# build a list of tuples (difference, - number of items)
# (because the greater the value the better, it means less columns)
# extract the min automatically (in case of equality, less is privileged)
# and then pick the number of items from the tuple and re-inverse it
def compute(n): return - min([(helper(n,v), -v) for v in [5,6,7,8,9,10]])[1]
For 77 this yields: 7 meaning 7 items per columns
For 22 this yields: 8 meaning 8 items per columns

How to do matrix conversions by row and columns toggles?

I have got a square matrix consisting of elements either 1
or 0. An ith row toggle toggles all the ith row elements (1
becomes 0 and vice versa) and jth column toggle toggles all
the jth column elements. I have got another square matrix of
similar size. I want to change the initial matrix to the
final matrix using the minimum number of toggles. For example
|0 0 1|
|1 1 1|
|1 0 1|
to
|1 1 1|
|1 1 0|
|1 0 0|
would require a toggle of the first row and of the last
column.
What will be the correct algorithm for this?
In general, the problem will not have a solution. To see this, note that transforming matrix A to matrix B is equivalent to transforming the matrix A - B (computed using binary arithmetic, so that 0 - 1 = 1) to the zero matrix. Look at the matrix A - B, and apply column toggles (if necessary) so that the first row becomes all 0's or all 1's. At this point, you're done with column toggles -- if you toggle one column, you have to toggle them all to get the first row correct. If even one row is a mixture of 0's and 1's at this point, the problem cannot be solved. If each row is now all 0's or all 1's, the problem is solvable by toggling the appropriate rows to reach the zero matrix.
To get the minimum, compare the number of toggles needed when the first row is turned to 0's vs. 1's. In the OP's example, the candidates would be toggling column 3 and row 1 or toggling columns 1 and 2 and rows 2 and 3. In fact, you can simplify this by looking at the first solution and seeing if the number of toggles is smaller or larger than N -- if larger than N, than toggle the opposite rows and columns.
It's not always possible. If you start with a 2x2 matrix with an even number of 1s you can never arrive at a final matrix with an odd number of 1s.
Algorithm
Simplify the problem from "Try to transform A into B" into "Try to transform M into 0", where M = A xor B. Now all the positions which must be toggled have a 1 in them.
Consider an arbitrary position in M. It is affected by exactly one column toggle and exactly one row toggle. If its initial value is V, the presence of the column toggle is C, and the presence of the row toggle is R, then the final value F is V xor C xor R. That's a very simple relationship, and it makes the problem trivial to solve.
Notice that, for each position, R = F xor V xor C = 0 xor V xor C = V xor C. If we set C then we force the value of R, and vice versa. That's awesome, because it means if I set the value of any row toggle then I will force all of the column toggles. Any one of those column toggles will force all of the row toggles. If the result is the 0 matrix, then we have a solution. We only need to try two cases!
Pseudo-code
function solve(Matrix M) as bool possible, bool[] rowToggles, bool[] colToggles:
For var b in {true, false}
colToggles = array from c in M.colRange select b xor Matrix(0, c)
rowToggles = array from r in M.rowRange select colToggles[0] xor M(r, 0)
if none from c in M.colRange, r in M.rowRange
where colToggle[c] xor rowToggle[r] xor M(r, c) != 0 then
return true, rowToggles, colToggles
end if
next var
return false, null, null
end function
Analysis
The analysis is trivial. We try two cases, within which we run along a row, then a column, then all cells. Therefore if there are r rows and c columns, meaning the matrix has size n = c * r, then the time complexity is O(2 * (c + r + c * r)) = O(c * r) = O(n). The only space we use is what is required for storing the outputs = O(c + r).
Therefore the algorithm takes time linear in the size of the matrix, and uses space linear in the size of the output. It is asymptotically optimal for obvious reasons.
I came up with a brute force algorithm.
The algorithm is based on 2 conjectures:
(so it may not work for all matrices - I'll verify them later)
The minimum (number of toggles) solution will contain a specific row or column only once.
In whatever order we apply the steps to convert the matrix, we get the same result.
The algorithm:
Lets say we have the matrix m = [ [1,0], [0,1] ].
m: 1 0
0 1
We generate a list of all row and column numbers,
like this: ['r0', 'r1', 'c0', 'c1']
Now we brute force, aka examine, every possible step combinations.
For example,we start with 1-step solution,
ksubsets = [['r0'], ['r1'], ['c0'], ['c1']]
if no element is a solution then proceed with 2-step solution,
ksubsets = [['r0', 'r1'], ['r0', 'c0'], ['r0', 'c1'], ['r1', 'c0'], ['r1', 'c1'], ['c0', 'c1']]
etc...
A ksubsets element (combo) is a list of toggle steps to apply in a matrix.
Python implementation (tested on version 2.5)
# Recursive definition (+ is the join of sets)
# S = {a1, a2, a3, ..., aN}
#
# ksubsets(S, k) = {
# {{a1}+ksubsets({a2,...,aN}, k-1)} +
# {{a2}+ksubsets({a3,...,aN}, k-1)} +
# {{a3}+ksubsets({a4,...,aN}, k-1)} +
# ... }
# example: ksubsets([1,2,3], 2) = [[1, 2], [1, 3], [2, 3]]
def ksubsets(s, k):
if k == 1: return [[e] for e in s]
ksubs = []
ss = s[:]
for e in s:
if len(ss) < k: break
ss.remove(e)
for x in ksubsets(ss,k-1):
l = [e]
l.extend(x)
ksubs.append(l)
return ksubs
def toggle_row(m, r):
for i in range(len(m[r])):
m[r][i] = m[r][i] ^ 1
def toggle_col(m, i):
for row in m:
row[i] = row[i] ^ 1
def toggle_matrix(m, combos):
# example of combos, ['r0', 'r1', 'c3', 'c4']
# 'r0' toggle row 0, 'c3' toggle column 3, etc.
import copy
k = copy.deepcopy(m)
for combo in combos:
if combo[0] == 'r':
toggle_row(k, int(combo[1:]))
else:
toggle_col(k, int(combo[1:]))
return k
def conversion_steps(sM, tM):
# Brute force algorithm.
# Returns the minimum list of steps to convert sM into tM.
rows = len(sM)
cols = len(sM[0])
combos = ['r'+str(i) for i in range(rows)] + \
['c'+str(i) for i in range(cols)]
for n in range(0, rows + cols -1):
for combo in ksubsets(combos, n +1):
if toggle_matrix(sM, combo) == tM:
return combo
return []
Example:
m: 0 0 0
0 0 0
0 0 0
k: 1 1 0
1 1 0
0 0 1
>>> m = [[0,0,0],[0,0,0],[0,0,0]]
>>> k = [[1,1,0],[1,1,0],[0,0,1]]
>>> conversion_steps(m, k)
['r0', 'r1', 'c2']
>>>
If you can only toggle the rows, and not the columns, then there will only be a subset of matrices that you can convert into the final result. If this is the case, then it would be very simple:
for every row, i:
if matrix1[i] == matrix2[i]
continue;
else
toggle matrix1[i];
if matrix1[i] == matrix2[i]
continue
else
die("cannot make similar");
This is a state space search problem. You are searching for the optimum path from a starting state to a destination state. In this particular case, "optimum" is defined as "minimum number of operations".
The state space is the set of binary matrices generatable from the starting position by row and column toggle operations.
ASSUMING that the destination is in the state space (NOT a valid assumption in some cases: see Henrik's answer), I'd try throwing a classic heuristic search (probably A*, since it is about the best of the breed) algorithm at the problem and see what happened.
The first, most obvious heuristic is "number of correct elements".
Any decent Artificial Intelligence textbook will discuss search and the A* algorithm.
You can represent your matrix as a nonnegative integer, with each cell in the matrix corresponding to exactly one bit in the integer On a system that supports 64-bit long long unsigned ints, this lets you play with anything up to 8x8. You can then use exclusive-OR operations on the number to implement the row and column toggle operations.
CAUTION: the raw total state space size is 2^(N^2), where N is the number of rows (or columns). For a 4x4 matrix, that's 2^16 = 65536 possible states.
Rather than look at this as a matrix problem, take the 9 bits from each array, load each of them into 2-byte size types (16 bits, which is probably the source of the arrays in the first place), then do a single XOR between the two.
(the bit order would be different depending on your type of CPU)
The first array would become: 0000000001111101
The second array would become: 0000000111110101
A single XOR would produce the output. No loops required. All you'd have to do is 'unpack' the result back into an array, if you still wanted to. You can read the bits without resorting to that, though.i
I think brute force is not necessary.
The problem can be rephrased in terms of a group. The matrices over the field with 2 elements constitute an commutative group with respect to addition.
As pointed out before, the question whether A can be toggled into B is equivalent to see if A-B can be toggled into 0. Note that toggling of row i is done by adding a matrix with only ones in the row i and zeros otherwise, while the toggling of column j is done by adding a matrix with only ones in column j and zeros otherwise.
This means that A-B can be toggled to the zero matrix if and only if A-B is contained in the subgroup generated by the toggling matrices.
Since addition is commutative, the toggling of columns takes place first, and we can apply the approach of Marius first to the columns and then to the rows.
In particular the toggling of the columns must make any row either all ones or all zeros. there are two possibilites:
Toggle columns such that every 1 in the first row becomes zero. If after this there is a row in which both ones and zeros occur, there is no solution. Otherwise apply the same approach for the rows (see below).
Toggle columns such that every 0 in the first row becomes 1. If after this there is a row in which both ones and zeros occur, there is no solution. Otherwise apply the same approach for the rows (see below).
Since the columns have been toggled successfully in the sense that in each row contains only ones or zeros, there are two possibilities:
Toggle rows such that every 1 in the first column becomes zero.
Toggle rows such that every 0 in the first row becomes zero.
Of course in the step for the rows, we take the possibility which results in less toggles, i.e. we count the ones in the first column and then decide how to toggle.
In total, only 2 cases have to be considered, namely how the columns are toggled; for the row step, the toggling can be decided by counting to minimuze the number of toggles in the second step.

Resources