Give a sparse matrix, how to reorder the rows and columns such that it is in block diagonal like form via row and column permutation?
Row and column permutation are not necessarily coupled like reverse Cuthill-McKee ordering:
http://www.mathworks.com/help/matlab/ref/symrcm.html?refresh=true In short, you can independently perform any row or column permutation.
The overall goal is to cluster all the non zero elements towards diagonal line.
Here is one approach.
First make a graph whose vertices are rows and columns. Every non-zero value is a edge between that row and that column.
You can then use a standard graph theory algorithm to detect the connected components of this graph. The single element ones represent all zero rows and columns. Number the others. Those components may have unequal numbers of rows and columns. You can distribute some zero rows and columns to them to make them square.
Your square components will be your blocks, and from the numbering of those components you know what order to put them in. Now just reorder rows and columns to achieve this structure and, voila! (The remaining zero rows/columns will result in a bunch of 0 blocks at the bottom right of the diagonal.)
Just an idea, but if you make a new matrix Ab from the original block-matrix A that contains the block-sparsity structure of A. E.g.:
A = [B 0 0; 0 0 C; 0 D 0]; % with matrices 0 (zero elements), B,C and D
Ab = [1 0 0; 0 0 2; 0 3 0]; % with identifiers 1, 2 and 3 (1-->B, 2-->C, 3-->D)
Then Ab is a simple sparse matrix (size 3x3 in the example). You can then use the reverse Cuthill-McKee ordering to get the permutations you want, and apply these permutations to Ab.
p = symrcm(Ab);
Abperm = Ab(p,p);
Then use the identifiers to create the ordered block matrix Aperm from Abperm and you'll have the desired result, I believe.
You'll need to be clever in assigning the identifiers to the individual blocks and so on, but this should be possible.
If you have a binary matrix of 1s and 0s, and you are able to toggle columns (change all 1s to 0s in the column, and all 0s to 1s), how do you find the max number of "pure" rows for all possible combinations of column toggles?
"pure" meaning the row is all 0s, or all 1s.
Ex:
1 0
1 0
1 1
You can toggle either column to get 2 rows that are "pure", which is the best you can do (toggling both is not better), so you return 2 (the max number of "pure" rows).
I can't seem to figure out an efficient way to do this. The only way I've gotten so far is with a bunch of loops and brute force and checking for sameness by checking if the sum of a row is either 0 (all 0s) or N (the number of elements in a row).
Update
After clarification from the OP, the max-pure row problem is to find the max number of rows that become either 00...0 or 11...1 after toggling. I have updated my solution accordingly.
Note that we have the following facts:
If two rows ri and rj reduce to a pure row after toggling, then we must have ri = rj to start with.
If ri ≠ rj and ri overlaps rj (i.e. some of their corresponding column are the same), then both of them cannot map to a pure row.
Both of the facts above comes directly from the following observation:
Max number of "pure" rows is the same as the max number of identical rows
Proof
We claim that all the rows that constitute a solution of the max-pure problem must be identical in the matrix M.
Suppose we are given a m-by-n matrix M, and we have found a solution of the max-pure row problem. Let rows ri and rj be two arbitrary rows that get reduce to pure rows after toggling.
Observe that after all the necessary toggling operation on the columns (denote by σ1, σ2, ..., σk), ri and rj are both "pure" rows. i.e. We have the following:
σ1(σ2(...(σk(ri)...)) = σ1(σ2(...(σk(rj)...)) = 00...0
or
σ1(σ2(...(σk(ri)...)) = σ1(σ2(...(σk(rj)...)) = 11...1
So after applying all these toggling operations, ri and rj will equal each other. If we undo the very last toggling (i.e. we toggling the same column entry of these rows), it is obviously that both ri and rj will still map to the same output. i.e. We have the following:
σ2(σ3(...(σk(ri)...)) = σ2(σ3(...(σk(rj)...))
If we we continue undoing the toggling operations, we can conclude that ri = rj. In other words, if you pick any arbitrary rows from a solution of the max-pure problem, these rows must be identical in the beginning.
Idea
Given a row ri, if it can be reduce to the pure row, say 00...0, then we know that another row rj cannot be reduced to 11...1 if ri overlaps with rj (from fact 2 above). We can only hope that another row rk which does not overlap with ri to reduce to 11...1.
Algorithm
From the preceding idea, we can have the following simple algorithm to solve the max-pure row problem.
We first scan over the rows of matrix M, and then find all the unique rows of the matrix (denote by s1, s2, ..., sk). We let count(si) denotes the number of times si appears in M.
We then loop over all the pairs (si, sj) to determine the max-pure row number as below:
int maxCount = 0;
for each row si:
for each sj ≠ si:
if (sj overlaps si)
continue;
else
if (count(si) + count(sj) > maxCount)
// We have found a better pair
maxCount = count(si) + count(sj);
return maxCount;
We are doing O(n) works in the inner for loop (for entry-wise checking whether two rows overlap), and the loops are over O(m2) rows in the worst-case, so the running time of the algorithm is O(nm2).
Maybe I'm missing something, but a quick run down the rows should answer your question.
Start with the top row, and flip each column as needed until the top row is all T. Count the number of pure rows. Repeat for every other row, finding if the count is greater than any previous row.
You don't need to invert the whole matrix so each row is all F, the count will be the same.
The worst-case running time would be O(nm).
Given two m x n matrices A and B whose elements belong to a set S.
Problem: Can the rows and columns of A be permuted to give B?
What is the complexity of algorithms to solve this problem?
Determinants partially help (when m=n): a necessary condition is that det(A) = +/- det(B).
Also allow A to contain "don't cares" that match any element of B.
Also, if S is finite allow permutations of elements of A.
This is not homework - it is related to the solved 17x17 puzzle.
See below example of permuting rows and columns of a matrix:
Observe the start matrix and end matrix. All elements in a row or column are retained its just that their order has changed. Also the change in relative positions is uniform across rows and columns
eg. see 1 in start matrix and end matrix. Its row has elements 12, 3 and 14 along with it. Also its column has 5, 9 and 2 along with it. This is maintained across the transformations.
Based on this fact I am putting forward this basic algo to find for a given matrix A, can its rows and columns of A be permuted to give matrix B.
1. For each row in A, sort all elements in the row. Do same for B.
2. Sort all rows of A (and B) based on its columns. ie. if row1 is {5,7,16,18} and row2 is {2,4,13,15}, then put row2 above row1
3. Compare resultant matrix A' and B'.
4. If both equal, then do (1) and (2) but for columns on ORIGINAL matrix A & B instead of rows.
5. Now compare resultant matrix A'' and B''
I'm looking at the standard definition of the assignment problem as defined here
My question is to do with the two constraints (latex notation follows):
\sum_{j=1}^n(x_{ij}) = 1 for all i = 1, ... , n
\sum_{i=1}^n(x_{ij}) = 1 for all j = 1, ... , n
Specifically, why the second constraint required? Doesn't the first already cover all pairs of x_{ij}?
Consider the matrix x_ij with the i ranging over the rows, and j ranging over the columns.
The first equation says that for each i (that is, for each row!) the sum of values in that row equals 1.
The second equations says thta for each j (that is, for each column!) the sum of values in that column equals 1.
No. Given that all the entries in X are 0 or 1, one constraint says 'there is exactly one 1 in each column' - the other says 'there is exactly one 1 in each row' (I always forget which way round matrix subscripts conventionally go). These statements have independent truth values.
This is not even remotely a programming problem. But I'll answer it anyway.
The first is a sum over j, for EACH value of i. The second is a sum over i, for EACH value of j.
So essentially, one of these constraint sets requires that the sum across the rows of the matrix x_{i,j} matrix must be unity. The other constraint is a requirement that the sum down the columns of that matrix must be unity.
(edit) It seems that we are still not being clear here. Consider the matrix
[0 1]
[0 1]
One must agree that the sum across the rows of this matrix is 1 for each row. However, when you form the sum of the elements of the first column, it is zero, and the sum of the elements in the second column, we find 2.
Now, consider a different matrix.
[0 1]
[1 0]
See that here, the sum over the rows or down the columns is always 1.
I have got a square matrix consisting of elements either 1
or 0. An ith row toggle toggles all the ith row elements (1
becomes 0 and vice versa) and jth column toggle toggles all
the jth column elements. I have got another square matrix of
similar size. I want to change the initial matrix to the
final matrix using the minimum number of toggles. For example
|0 0 1|
|1 1 1|
|1 0 1|
to
|1 1 1|
|1 1 0|
|1 0 0|
would require a toggle of the first row and of the last
column.
What will be the correct algorithm for this?
In general, the problem will not have a solution. To see this, note that transforming matrix A to matrix B is equivalent to transforming the matrix A - B (computed using binary arithmetic, so that 0 - 1 = 1) to the zero matrix. Look at the matrix A - B, and apply column toggles (if necessary) so that the first row becomes all 0's or all 1's. At this point, you're done with column toggles -- if you toggle one column, you have to toggle them all to get the first row correct. If even one row is a mixture of 0's and 1's at this point, the problem cannot be solved. If each row is now all 0's or all 1's, the problem is solvable by toggling the appropriate rows to reach the zero matrix.
To get the minimum, compare the number of toggles needed when the first row is turned to 0's vs. 1's. In the OP's example, the candidates would be toggling column 3 and row 1 or toggling columns 1 and 2 and rows 2 and 3. In fact, you can simplify this by looking at the first solution and seeing if the number of toggles is smaller or larger than N -- if larger than N, than toggle the opposite rows and columns.
It's not always possible. If you start with a 2x2 matrix with an even number of 1s you can never arrive at a final matrix with an odd number of 1s.
Algorithm
Simplify the problem from "Try to transform A into B" into "Try to transform M into 0", where M = A xor B. Now all the positions which must be toggled have a 1 in them.
Consider an arbitrary position in M. It is affected by exactly one column toggle and exactly one row toggle. If its initial value is V, the presence of the column toggle is C, and the presence of the row toggle is R, then the final value F is V xor C xor R. That's a very simple relationship, and it makes the problem trivial to solve.
Notice that, for each position, R = F xor V xor C = 0 xor V xor C = V xor C. If we set C then we force the value of R, and vice versa. That's awesome, because it means if I set the value of any row toggle then I will force all of the column toggles. Any one of those column toggles will force all of the row toggles. If the result is the 0 matrix, then we have a solution. We only need to try two cases!
Pseudo-code
function solve(Matrix M) as bool possible, bool[] rowToggles, bool[] colToggles:
For var b in {true, false}
colToggles = array from c in M.colRange select b xor Matrix(0, c)
rowToggles = array from r in M.rowRange select colToggles[0] xor M(r, 0)
if none from c in M.colRange, r in M.rowRange
where colToggle[c] xor rowToggle[r] xor M(r, c) != 0 then
return true, rowToggles, colToggles
end if
next var
return false, null, null
end function
Analysis
The analysis is trivial. We try two cases, within which we run along a row, then a column, then all cells. Therefore if there are r rows and c columns, meaning the matrix has size n = c * r, then the time complexity is O(2 * (c + r + c * r)) = O(c * r) = O(n). The only space we use is what is required for storing the outputs = O(c + r).
Therefore the algorithm takes time linear in the size of the matrix, and uses space linear in the size of the output. It is asymptotically optimal for obvious reasons.
I came up with a brute force algorithm.
The algorithm is based on 2 conjectures:
(so it may not work for all matrices - I'll verify them later)
The minimum (number of toggles) solution will contain a specific row or column only once.
In whatever order we apply the steps to convert the matrix, we get the same result.
The algorithm:
Lets say we have the matrix m = [ [1,0], [0,1] ].
m: 1 0
0 1
We generate a list of all row and column numbers,
like this: ['r0', 'r1', 'c0', 'c1']
Now we brute force, aka examine, every possible step combinations.
For example,we start with 1-step solution,
ksubsets = [['r0'], ['r1'], ['c0'], ['c1']]
if no element is a solution then proceed with 2-step solution,
ksubsets = [['r0', 'r1'], ['r0', 'c0'], ['r0', 'c1'], ['r1', 'c0'], ['r1', 'c1'], ['c0', 'c1']]
etc...
A ksubsets element (combo) is a list of toggle steps to apply in a matrix.
Python implementation (tested on version 2.5)
# Recursive definition (+ is the join of sets)
# S = {a1, a2, a3, ..., aN}
#
# ksubsets(S, k) = {
# {{a1}+ksubsets({a2,...,aN}, k-1)} +
# {{a2}+ksubsets({a3,...,aN}, k-1)} +
# {{a3}+ksubsets({a4,...,aN}, k-1)} +
# ... }
# example: ksubsets([1,2,3], 2) = [[1, 2], [1, 3], [2, 3]]
def ksubsets(s, k):
if k == 1: return [[e] for e in s]
ksubs = []
ss = s[:]
for e in s:
if len(ss) < k: break
ss.remove(e)
for x in ksubsets(ss,k-1):
l = [e]
l.extend(x)
ksubs.append(l)
return ksubs
def toggle_row(m, r):
for i in range(len(m[r])):
m[r][i] = m[r][i] ^ 1
def toggle_col(m, i):
for row in m:
row[i] = row[i] ^ 1
def toggle_matrix(m, combos):
# example of combos, ['r0', 'r1', 'c3', 'c4']
# 'r0' toggle row 0, 'c3' toggle column 3, etc.
import copy
k = copy.deepcopy(m)
for combo in combos:
if combo[0] == 'r':
toggle_row(k, int(combo[1:]))
else:
toggle_col(k, int(combo[1:]))
return k
def conversion_steps(sM, tM):
# Brute force algorithm.
# Returns the minimum list of steps to convert sM into tM.
rows = len(sM)
cols = len(sM[0])
combos = ['r'+str(i) for i in range(rows)] + \
['c'+str(i) for i in range(cols)]
for n in range(0, rows + cols -1):
for combo in ksubsets(combos, n +1):
if toggle_matrix(sM, combo) == tM:
return combo
return []
Example:
m: 0 0 0
0 0 0
0 0 0
k: 1 1 0
1 1 0
0 0 1
>>> m = [[0,0,0],[0,0,0],[0,0,0]]
>>> k = [[1,1,0],[1,1,0],[0,0,1]]
>>> conversion_steps(m, k)
['r0', 'r1', 'c2']
>>>
If you can only toggle the rows, and not the columns, then there will only be a subset of matrices that you can convert into the final result. If this is the case, then it would be very simple:
for every row, i:
if matrix1[i] == matrix2[i]
continue;
else
toggle matrix1[i];
if matrix1[i] == matrix2[i]
continue
else
die("cannot make similar");
This is a state space search problem. You are searching for the optimum path from a starting state to a destination state. In this particular case, "optimum" is defined as "minimum number of operations".
The state space is the set of binary matrices generatable from the starting position by row and column toggle operations.
ASSUMING that the destination is in the state space (NOT a valid assumption in some cases: see Henrik's answer), I'd try throwing a classic heuristic search (probably A*, since it is about the best of the breed) algorithm at the problem and see what happened.
The first, most obvious heuristic is "number of correct elements".
Any decent Artificial Intelligence textbook will discuss search and the A* algorithm.
You can represent your matrix as a nonnegative integer, with each cell in the matrix corresponding to exactly one bit in the integer On a system that supports 64-bit long long unsigned ints, this lets you play with anything up to 8x8. You can then use exclusive-OR operations on the number to implement the row and column toggle operations.
CAUTION: the raw total state space size is 2^(N^2), where N is the number of rows (or columns). For a 4x4 matrix, that's 2^16 = 65536 possible states.
Rather than look at this as a matrix problem, take the 9 bits from each array, load each of them into 2-byte size types (16 bits, which is probably the source of the arrays in the first place), then do a single XOR between the two.
(the bit order would be different depending on your type of CPU)
The first array would become: 0000000001111101
The second array would become: 0000000111110101
A single XOR would produce the output. No loops required. All you'd have to do is 'unpack' the result back into an array, if you still wanted to. You can read the bits without resorting to that, though.i
I think brute force is not necessary.
The problem can be rephrased in terms of a group. The matrices over the field with 2 elements constitute an commutative group with respect to addition.
As pointed out before, the question whether A can be toggled into B is equivalent to see if A-B can be toggled into 0. Note that toggling of row i is done by adding a matrix with only ones in the row i and zeros otherwise, while the toggling of column j is done by adding a matrix with only ones in column j and zeros otherwise.
This means that A-B can be toggled to the zero matrix if and only if A-B is contained in the subgroup generated by the toggling matrices.
Since addition is commutative, the toggling of columns takes place first, and we can apply the approach of Marius first to the columns and then to the rows.
In particular the toggling of the columns must make any row either all ones or all zeros. there are two possibilites:
Toggle columns such that every 1 in the first row becomes zero. If after this there is a row in which both ones and zeros occur, there is no solution. Otherwise apply the same approach for the rows (see below).
Toggle columns such that every 0 in the first row becomes 1. If after this there is a row in which both ones and zeros occur, there is no solution. Otherwise apply the same approach for the rows (see below).
Since the columns have been toggled successfully in the sense that in each row contains only ones or zeros, there are two possibilities:
Toggle rows such that every 1 in the first column becomes zero.
Toggle rows such that every 0 in the first row becomes zero.
Of course in the step for the rows, we take the possibility which results in less toggles, i.e. we count the ones in the first column and then decide how to toggle.
In total, only 2 cases have to be considered, namely how the columns are toggled; for the row step, the toggling can be decided by counting to minimuze the number of toggles in the second step.