Different speedups on different machines for same program - performance

I have a dell laptop, i7 5th gen processor(1000MHz) with 4 logical cores and 2 physical cores with 16 GB RAM. I have taken a course on High performance computing, for which I have to draw graphs of speed-up.
Compared to a Desktop machine(800 MHz) (i5 5th gen and 8GB RAM), having 4 physical and logical cores, for same program, my laptop takes ~3 seconds while on the desktop machine it takes around 12 seconds. Ideally, since the laptop is 1.25 times faster, the time on my laptop should have been around 9 to 10 seconds
This might not have been the problem if I had got almost similar speedup. But in my laptop, using 4 threads, the speedup is nearly equal to 1.3 and for the same number of cores, on my desktop the speedup is nearly equal to 3.5. If my laptop was fast, then it would have also reflected that property for parallel program, but the parallel program was only ~1.3 times faster. What could have been the reason?

Related

How to get better performace in ProxmoxVE + CEPH cluster

We have been running ProxmoxVE since 5.0 (now in 6.4-15) and we noticed a decay in performance whenever there is some heavy reading/writing.
We have 9 nodes, 7 with CEPH and 56 OSDs (8 on each node). OSDs are hard drives (HDD) WD Gold or better (4~12 Tb). Nodes with 64/128 Gbytes RAM, dual Xeon CPU mainboards (various models).
We already tried simple tests like "ceph tell osd.* bench" getting stable 110 Mb/sec data transfer to each of them with +- 10 Mb/sec spread during normal operations. Apply/Commit Latency is normally below 55 ms with a couple of OSDs reaching 100 ms and one-third below 20 ms.
The front network and back network are both 1 Gbps (separated in VLANs), we are trying to move to 10 Gbps but we found some trouble we are still trying to figure out how to solve (unstable OSDs disconnections).
The Pool is defined as "replicated" with 3 copies (2 needed to keep running). Now the total amount of disk space is 305 Tb (72% used), reweight is in use as some OSDs were getting much more data than others.
Virtual machines run on the same 9 nodes, most are not CPU intensive:
Avg. VM CPU Usage < 6%
Avg. Node CPU Usage < 4.5%
Peak VM CPU Usage 40%
Peak Node CPU Usage 30%
But I/O Wait is a different story:
Avg. Node IO Delay 11
Max. Node IO delay 38
Disk writing load is around 4 Mbytes/sec average, with peaks up to 20 Mbytes/sec.
Anyone with experience in getting better Proxmox+CEPH performance?
Thank you all in advance for taking the time to read,
Ruben.
Got some Ceph pointers that you could follow...
get some good NVMEs (one or two per server but if you have 8HDDs per server 1 should be enough) and put those as DB/WALL (make sure they have power protection)
the ceph tell osd.* bench is not that relevant for real world, I suggest to try some FIO tests see here
set OSD osd_memory_target to at 8G or RAM minimum.
in order to save some write on your HDD (data is not replicated X times) create your RBD pool as EC (erasure coded pool) but please do some research on that because there are some tradeoffs. Recovery takes some extra CPU calculations
All and all, hype-converged clusters are good for training, small projects and medium projects with not such a big workload on them... Keep in mind that planning is gold
Just my 2 cents,
B.

What is the difference between MIPS and Execution time

When it comes to rating the performance of a processor, is calculating the Million Instructions Per Second (MIPS) a practical measure to use?
Or is finding the Execution Time (IC x CPI x 1/CR) the main thing to use?
Imagine you have one CPU that does 100 million tiny little instructions that don't do much on their own per second. Next; imagine you have another CPU where you need a quarter of the instructions to do the same work; which can do 50 million larger instructions per second. The second CPU has half as many MIPs but is twice as fast.
Now.. Imagine you have 2 CPUs that both execute the exact same instructions; where one CPU runs at 1 GHz, can do 5 instructions per cycle, and stalls rarely; and the other CPU runs at 4 GHz, can only do 2 instructions per cycle, and spends a lot more time stalled doing nothing (due to cache misses, branch mispredictions, etc). In this case the 1 GHz CPU might be significantly faster than the 4 GHz CPU.
Finally; imagine you have 2 CPUs that both execute the exact same instructions, both have exactly the same clock frequency, both execute the same number of instructions per cycle, and both spend exactly the same amount of time stalled. One CPU has overheats easily and had to "under-clock" itself to a crawl after 250 milliseconds of not being idle just to avoid melting itself, and the other CPU can go at max. speed continuously without ever overheating.
Execution time is how long it takes to do some work taking everything into account (and can be extremely different for different types of work); while MIPS is like a real estate agent determining how much a building is worth by measuring the weight of a rubber chicken.

Low GPU usage in CUDA

I implemented a program which uses different CUDA streams from different CPU threads. Memory copying is implemented via cudaMemcpyAsync using those streams. Kernel launches are also using those streams. The program is doing double-precision computations (and I suspect this is the culprit, however, cuBlas reaches 75-85% CPU usage for multiplication of matrices of doubles). There are also reduction operations, however they are implemented via if(threadIdx.x < s) with s decreasing 2 times in each iteration, so stalled warps should be available to other blocks. The application is GPU and CPU intensive, it starts with another piece of work as soon as the previous has finished. So I expect it to reach 100% of either CPU or GPU.
The problem is that my program generates 30-40% of GPU load (and about 50% of CPU load), if trusting GPU-Z 1.9.0. Memory Controller Load is 9-10%, Bus Interface Load is 6%. This is for the number of CPU threads equal to the number of CPU cores. If I double the number of CPU threads, the loads stay about the same (including the CPU load).
So why is that? Where is the bottleneck?
I am using GeForce GTX 560 Ti, CUDA 8RC, MSVC++2013, Windows 10.
One my guess is that Windows 10 applies some aggressive power saving, even though GPU and CPU temperatures are low, the power plan is set to "High performance" and the power supply is 700W while power consumption with max CPU and GPU TDP is about 550W.
Another guess is that double-precision speed is 1/12 of the single-precision speed because there are 1 double-precision CUDA core per 12 single-precision CUDA cores on my card, and GPU-Z takes as 100% the situation when all single-precision and double-precision cores are used. However, the numbers do not quite match.
Apparently the reason was low occupancy due to CUDA threads using too many registers by default. To tell the compiler the limit on the number of registers per thread, __launch_bounds__ can be used, as described here. So to be able to launch all 1536 threads in 560 Ti, for block size 256 the following can be specified:
_global__ void __launch_bounds__(256, 6) MyKernel(...) { ... }
After limiting the number of registers per CUDA thread, the GPU usage has raised to 60% for me.
By the way, 5xx series cards are still supported by NSight v5.1 for Visual Studio. It can be downloaded from the archive.
EDIT: the following flags have further increased GPU usage to 70% in an application that uses multiple GPU streams from multiple CPU threads:
cudaSetDeviceFlags(cudaDeviceScheduleYield | cudaDeviceMapHost | cudaDeviceLmemResizeToMax);
cudaDeviceScheduleYield lets other threads execute when a CPU
thread is waiting on GPU operation, rather than spinning GPU for the
result.
cudaDeviceLmemResizeToMax, as I understood it, makes kernel
launches themselves asynchronous and avoids excessive local memory
allocations&deallocations.

Why can't my ultraportable laptop CPU maintain peak performance in HPC

I have developed a high performance Cholesky factorization routine, which should have peak performance at around 10.5 GFLOPs on a single CPU (without hyperthreading). But there is some phenomenon which I don't understand when I test its performance. In my experiment, I measured the performance with increasing matrix dimension N, from 250 up to 10000.
In my algorithm I have applied caching (with tuned blocking factor), and data are always accessed with unit stride during computation, so cache performance is optimal; TLB and paging problem are eliminated;
I have 8GB available RAM, and the maximum memory footprint during experiment is under 800MB, so no swapping comes across;
During experiment, no resource demanding process like web browser is running at the same time. Only some really cheap background process is running to record CPU frequency as well as CPU temperature data every 2s.
I would expect the performance (in GFLOPs) should maintain at around 10.5 for whatever N I am testing. But a significant performance drop is observed in the middle of the experiment as shown in the first figure.
CPU frequency and CPU temperature are seen in the 2nd and 3rd figure. The experiment finishes in 400s. Temperature was at 51 degree when experiment started, and quickly rose up to 72 degree when CPU got busy. After that it grew slowly to the highest at 78 degree. CPU frequency is basically stable, and it did not drop when temperature got high.
So, my question is:
since CPU frequency did not drop, why performance suffers?
how exactly does temperature affect CPU performance? Does the increment from 72 degree to 78 degree really make things worse?
CPU info
System: Ubuntu 14.04 LTS
Laptop model: Lenovo-YOGA-3-Pro-1370
Processor: Intel Core M-5Y71 CPU # 1.20 GHz * 2
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 4
On-line CPU(s) list: 0,1
Off-line CPU(s) list: 2,3
Thread(s) per core: 1
Core(s) per socket: 2
Socket(s): 1
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 61
Stepping: 4
CPU MHz: 1474.484
BogoMIPS: 2799.91
Virtualisation: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 4096K
NUMA node0 CPU(s): 0,1
CPU 0, 1
driver: intel_pstate
CPUs which run at the same hardware frequency: 0, 1
CPUs which need to have their frequency coordinated by software: 0, 1
maximum transition latency: 0.97 ms.
hardware limits: 500 MHz - 2.90 GHz
available cpufreq governors: performance, powersave
current policy: frequency should be within 500 MHz and 2.90 GHz.
The governor "performance" may decide which speed to use
within this range.
current CPU frequency is 1.40 GHz.
boost state support:
Supported: yes
Active: yes
update 1 (control experiment)
In my original experiment, CPU is kept busy working from N = 250 to N = 10000. Many people (primarily those whose saw this post before re-editing) suspected that the overheating of CPU is the major reason for performance hit. Then I went back and installed lm-sensors linux package to track such information, and indeed, CPU temperature rose up.
But to complete the picture, I did another control experiment. This time, I give CPU a cooling time between each N. This is achieved by asking the program to pause for a number of seconds at the start of iteration of the loop through N.
for N between 250 and 2500, the cooling time is 5s;
for N between 2750 and 5000, the cooling time is 20s;
for N between 5250 and 7500, the cooling time is 40s;
finally for N between 7750 and 10000, the cooling time is 60s.
Note that the cooling time is much larger than the time spent for computation. For N = 10000, only 30s are needed for Cholesky factorization at peak performance, but I ask for a 60s cooling time.
This is certainly a very uninteresting setting in high performance computing: we want our machine to work all the time at peak performance, until a very large task is completed. So this kind of halt makes no sense. But it helps to better know the effect of temperature on performance.
This time, we see that peak performance is achieved for all N, just as theory supports! The periodic feature of CPU frequency and temperature is the result of cooling and boost. Temperature still has an increasing trend, simply because as N increases, the work load is getting bigger. This also justifies more cooling time for a sufficient cooling down, as I have done.
The achievement of peak performance seems to rule out all effects other than temperature. But this is really annoying. Basically it says that computer will get tired in HPC, so we can't get expected performance gain. Then what is the point of developing HPC algorithm?
OK, here are the new set of plots:
I don't know why I could not upload the 6th figure. SO simply does not allow me to submit the edit when adding the 6th figure. So I am sorry I can't attach the figure for CPU frequency.
update 2 (how I measure CPU frequency and temperature)
Thanks to Zboson for adding the x86 tag. The following bash commands are what I used for measurement:
while true
do
cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq >> cpu0_freq.txt ## parameter "freq0"
cat sys/devices/system/cpu/cpu1/cpufreq/scaling_cur_freq >> cpu1_freq.txt ## parameter "freq1"
sensors | grep "Core 0" >> cpu0_temp.txt ## parameter "temp0"
sensors | grep "Core 1" >> cpu1_temp.txt ## parameter "temp1"
sleep 2
done
Since I did not pin the computation to 1 core, the operating system will alternately use two different cores. It makes more sense to take
freq[i] <- max (freq0[i], freq1[i])
temp[i] <- max (temp0[i], temp1[i])
as the overall measurement.
TL:DR: Your conclusion is correct. Your CPU's sustained performance is nowhere near its peak. This is normal: the peak perf is only available as a short term "bonus" for bursty interactive workloads, above its rated sustained performance, given the light-weight heat-sink, fans, and power-delivery.
You can develop / test on this machine, but benchmarking will be hard. You'll want to run on a cluster, server, or desktop, or at least a gaming / workstation laptop.
From the CPU info you posted, you have a dual-core-with-hyperthreading Intel Core M with a rated sustainable frequency of 1.20 GHz, Broadwell generation. Its max turbo is 2.9GHz, and it's TDP-up sustainable frequency is 1.4GHz (at 6W).
For short bursts, it can run much faster and make much more heat than it requires its cooling system to handle. This is what Intel's "turbo" feature is all about. It lets low-power ultraportable laptops like yours have snappy UI performance in stuff like web browsers, because the CPU load from interactive is almost always bursty.
Desktop/server CPUs (Xeon and i5/i7, but not i3) do still have turbo, but the sustained frequency is much closer to the max turbo. e.g. a Haswell i7-4790k has a sustained "rated" frequency of 4.0GHz. At that frequency and below, it won't use (and convert to heat) more than its rated TDP of 88W. Thus, it needs a cooling system that can handle 88W. When power/current/temperature allow, it can clock up to 4.4GHz and use more than 88W of power. (The sliding window for calculating the power history to keep the sustained power with 88W is sometimes configurable in the BIOS, e.g. 20sec or 5sec. Depending on what code is running, 4.4GHz might not increase the electrical current demand to anywhere near peak. e.g. code with lots of branch mispredicts that's still limited by CPU frequency, but that doesn't come anywhere near saturating the 256b AVX FP units like Prime95 would.)
Your laptop's max turbo is a factor of 2.4x higher than rated frequency. That high-end Haswell desktop CPU can only upclock by 1.1x. The max sustained frequency is already pretty close to the max peak limits, because it's rated to need a good cooling system that can keep up with that kind of heat production. And a solid power supply that can supply that much current.
The purpose of Core M is to have a CPU that can limit itself to ultra low power levels (rated TDP of 4.5 W at 1.2GHz, 6W at 1.4GHz). So the laptop manufacturer can safely design a cooling and power delivery system that's small and light, and only handles that much power. The "Scenario Design Power" is only 3.5W, and that's supposed to represent the thermal requirements for real-world code, not max-power stuff like Prime95.
Even a "normal" ULV laptop CPU is rated for 15W sustained, and high power gaming/workstation laptop CPUs at 45W. And of course laptop vendors put those CPUs into machines with beefier heat-sinks and fans. See a table on wikipedia, and compare desktop / server CPUs (also on the same page).
The achievement of peak performance seems to rule out all effects
other than temperature. But this is really annoying. Basically it says
that computer will get tired in HPC, so we can't get expected
performance gain. Then what is the point of developing HPC algorithm?
The point is to run them on hardware that's not so badly thermally limited! An ultra-low-power CPU like a Core M makes a decent dev platform, but not a good HPC compute platform.
Even a laptop with an xxxxM CPU, rather than a xxxxU CPU, will do ok. (e.g. a "gaming" or "workstation" laptop that's designed to run CPU-intensive stuff for sustained periods). Or in Skylake-family, "xxxxH" or "HK" are the 45W mobile CPUs, at least quad-core.
Further reading:
Modern Microprocessors
A 90-Minute Guide!
[Power Delivery in a Modern Processor] - general background, including the "power wall" that Pentium 4 ran into.
(https://www.realworldtech.com/power-delivery/) - really deep technical dive into CPU / motherboard design and the challenges of delivering stable low-voltage to very bursty demands, and reacting quickly to the CPU requesting more / less voltage as it changes frequency.

Task Manager: CPU usage history

I bougth recently a server with 2 x X5550, they are quad (4 cores each) total 8 cores
If I check the task manager it shows in the CPU usage history 16 diagrams,
Should't it be 8 cause I have 2 processors with quad?
or the diagrams maybee shows the Threads of the CPU?
The CPUs have support for HyperThreading, so each core x2 logical CPUs.
You can always lookup the chip specs on Intel's site

Resources