Task Manager: CPU usage history - performance

I bougth recently a server with 2 x X5550, they are quad (4 cores each) total 8 cores
If I check the task manager it shows in the CPU usage history 16 diagrams,
Should't it be 8 cause I have 2 processors with quad?
or the diagrams maybee shows the Threads of the CPU?

The CPUs have support for HyperThreading, so each core x2 logical CPUs.
You can always lookup the chip specs on Intel's site

Related

Confused about OMP_NUM_THREADS and numactl NUMA-cores bindings

I'm confused about how multiple launches of same python command bind to cores on a NUMA Xeon machine.
I read that OMP_NUM_THREADS env var sets the number of threads launched for a numactl process. So if I ran numactl --physcpubind=4-7 --membind=0 python -u test.py with OMP_NUM_THREADS=4 on a hyperthreaded HT machine (lscpu output below) it'd limit the this numactl process to 4 threads.
But since machine has HT, it's not clear to me if 4-7 in the above are 4 physical or 4 logical.
How to find which of the numa-node-0 cores in 0-23,96-119 are physical and which ones logical? Are 96-119 all logical or are they interspersed?
If 4-7 are all physical cores, then with HT on there would be only 2 physical cores needed, so what happens to the other 2?
Where is OpenMP library getting invoked in binding threads to physical cores?
(from my limited understanding I could just launch command python main.py in a sh shell 20 times with different numactl bindings and OMP_NUM_THREADS still applies, even though I didn't explicitly use MPI lib anywhere, is that correct?)
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 46 bits physical, 48 bits virtual
CPU(s): 192
On-line CPU(s) list: 0-191
Thread(s) per core: 2
Core(s) per socket: 48
Socket(s): 2
NUMA node(s): 4
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Platinum 9242 CPU # 2.30GHz
Stepping: 7
Frequency boost: enabled
CPU MHz: 1000.026
CPU max MHz: 2301,0000
CPU min MHz: 1000,0000
BogoMIPS: 4600.00
L1d cache: 3 MiB
L1i cache: 3 MiB
L2 cache: 96 MiB
L3 cache: 143 MiB
NUMA node0 CPU(s): 0-23,96-119
NUMA node1 CPU(s): 24-47,120-143
NUMA node2 CPU(s): 48-71,144-167
NUMA node3 CPU(s): 72-95,168-191
I read that OMP_NUM_THREADS env var sets the number of threads launched for a numactl process.
numactl do not launch threads. It controls NUMA policy for processes or shared memory. However, OpenMP runtimes may adapt the number of threads created by a region based on the environment set by numactl (although AFAIK this behaviour is undefined by the standard). You should use the environment variable OMP_NUM_THREADS to set the number of threads. You can check the OpenMP configuration using the environment variable OMP_DISPLAY_ENV.
How to find which of the numa-node-0 cores in 0-23,96-119 are physical and which ones logical? Are 96-119 all logical or are they interspersed?
This is a bit complex. Physical IDs are the ones available in /proc/cpuinfo. They are not guaranteed to stay the same over time (eg. they can change when the machine is restarted) nor "intuitive" (ie. following rules like being contiguous for threads/cores close to each other). One should avoid hard-coding them manually. e.g. a BIOS update or kernel update might lead to enumerating logical cores in a different order.
You can use the great tool hwloc to convert well-defined deterministic logical IDs to physical ones. Here, you cannot be entirely sure that 0 and 96 are two threads sharing the same core (although this is probably true here for your processor, where it looks like the kernel enumerated one logical core from each physical core as cores 0..95, then 96..191 for the other logical core on each physical core). The other common possibility is for Linux to do both logical cores of each physical core consecutively, making logical cores 2n and 2n+1 share a physical core.
If 4-7 are all physical cores, then with HT on there would be only 2 physical cores needed, so what happens to the other 2?
--physcpubind of numctl accepts physical cpu numbers as shown in the "processor" fields of /proc/cpuinfo regarding the documentation. Thus, 4-7 here should be interpreted as physical thread IDs. Two threads IDs can refer to the same physical core (which is always the case on Intel processors with hyper-threading enabled).
Where is OpenMP library getting invoked in binding threads to physical cores?
AFAIK, this is implementation dependent of the OpenMP runtime used (eg. GOMP, IOMP, etc.). The initialization of the OpenMP runtime is often done lazily when the first parallel section is encountered. For the binding, some runtimes read /proc/cpuinfo manually while some other use hwloc. If you want deterministic bindings, then you should use the OMP_PLACES and OMP_PROC_BIND environment variables to tell the runtime to bind threads using a custom user-defined method and not the default one.
If you want to be safe and portable, use the following configuration (using Bash):
OMP_NUM_THREADS=4
OMP_PROC_BIND=TRUE
OMP_PLACES={$(hwloc-calc --physical-output --sep "},{" --intersect PU core:all.pu:0)}
The OpenMP threads will be scheduled on OpenMP places. The above configuration configure the OpenMP runtime so that there will be 4 threads statically map on 4 different fixed cores.

optimal number of CUDA parallel blocks

Can there be any performance advantage to launch a grid of blocks simultaneously over launching blocks one at a time if the number of threads in each block is already larger than the number of CUDA cores?
I think there is; A thread block is assigned to a Streaming Multiprocessor (SM) and the SM further divides the threads of each block into warps of 32 threads (newer architectures can handle larger warps) that are scheduled to be executed (more-less) sequentially. Considering this, it will be faster to break each computation into blocks so that they occupy as many SMs as possible. It is also meaning full to build blocks that are multiples of the threads per warp that the card supports (a block of 32 or 64 threads rather than 40 threads, for the case that SMs use 32-thread warps).
Launch Latency
Launch latency (API call to work is started on the GPU) is of a grid is 3-8 µs on Linux to
30-80 µs on Windows Vista/Win7.
Distributing a block to a SM is 10-100s ns.
Launching a warp in a block (32 threads) is a few cycles and happens in parallel on each SM.
Resource Limitations
Concurrent Kernels
- Tesla N/A only 1 grid at a time
- Fermi 16 grids at a time
- Kepler 16 grids (Kepler2 32 grids)
Maximum Blocks (not considering occupancy limitations)
- Tesla SmCount * 8 (gtx280 = 30 * 8 = 240)
- Fermi SmCount * 16 (gf100 = 16 * 16 = 256)
- Kepler SmCount * 16 (gk104 = 8 * 16 = 128)
See occupancy calculator for limitations on threads per block, threads per SM, registers per SM, registers per thread, ...
Warps Scheduling and CUDA Cores
CUDA cores are floating point/ALU units. Each SM has other types of execution units including load/store, special function, branch, etc. A CUDA core is equivalent to a SIMD unit in a x86 processor. It is not equivalent to a x86 core.
Occupancy is the measure of warps per SM to the maximum number of warps per SM. The more warps per SM the higher the chance that the warp scheduler has an eligible warp to schedule. However, the higher the occupancy the less resources will be available per thread. As a basic goal you want to target more than
25% 8 warps on Tesla
50% or 24 warps on Fermi
50% or 32 warps on Kepler (generally higher)
You'll notice there is no real relationship to CUDA cores in these calculations.
To understand this better read the Fermi whitepaper and if you can use the Nsight Visual Studio Edition CUDA Profiler look at the Issue Efficiency Experiment (not yet available in the CUDA Profiler or Visual Profiler) to understand how well your kernel is hiding execution and memory latency.

How system is calculating to get the NumberOfLogicalProcessors in VB

For a Intel(R) Core(TM)2 Quad CPU Q8400 # 2.66GHz model cpu I am getting both the NumberOfCores and NumberOfLogicalProcessors as 4 .
I want to know how system is calculating NumberOfLogicalProcessors ?
What i should use to get the actual number of cpus ?
OS: win2k8 R2
That depends on what you meant by actual CPU.
Win32_Processor\NumberOfCores specifies the total number of physical CPU cores. A chip can contain one or more CPU cores.
Win32_Processor\NumberOfLogicalProcessors specifies the total number of virtual CPU cores. There can be two or more virtual CPU cores in one physical CPU core. On x86 compatible computers, this is only available in Intel's Hyper-Threading capable CPUs.
On the other hand, the Win32_ComputerSystem\NumberOfProcessors specifies the total number of physical processor chips installed on a multi processor motherboard.
The Win32_ComputerSystem\NumberOfLogicalProcessors is same as Win32_Processor\NumberOfLogicalProcessors.

Are not all processors created equal?

My laptop has 4 logical processors (two physical); logical CPUs 1 and 2 map to core 1, and logical CPUs 3 and 4 map to core 2 (verified with GetLogicalProcessorInformation()).
I ran a multithreaded matrix multiplication program on my computer with two threads. The first time, I used SetProcessAffinityMask(hProcess, 0x5) (which means logical processors 1 and 3) while the second time I used SetProcessAffinityMask(hProcess, 0xA) (logical processors 2 and 4).
It turned out that the first version was about twice as fast as the second version, as though I'd never multithreaded the second version anyway.
Does anyone have any guesses as to why this might be happening?
Measurements:
Plugged in (full CPU):
Affinity mask: 0x3 (0011b), 9 gflop/s
Affinity mask: 0x5 (0101b), 17 gflop/s
Affinity mask: 0x6 (0110b), 17 gflop/s
Affinity mask: 0x9 (1001b), 9 gflop/s
Affinity mask: 0xA (1010b), 9 gflop/s
Affinity mask: 0xC (1100b), 9 gflop/s
On battery (clocked down):
Affinity mask: 0x3 (0011b), 5 gflop/s
Affinity mask: 0x5 (0101b), 10 gflop/s
Affinity mask: 0x6 (0110b), 10 gflop/s
Affinity mask: 0x9 (1001b), 5 gflop/s
Affinity mask: 0xA (1010b), 2 gflop/s
(--> Very interesting, why half speed when on battery but normal speed on AC?! this one varies a lot between 1.5-2.5 gflop/s, unlike the others.)
Affinity mask: 0xC (1100b), 5 gflop/s
Does this imply that the fourth logical CPU is not doing anything (!)? (Everything with the mask for the fourth CPU set is slow.)
Update:
I just ran the same thing on the High Performance profile on batteries. The results are inconsistent: This time, I got 2x speedup for the masks 5, 6, and 10, but there was no speedup for mask 12. I'll try to run the tests again on AC power, but ultimately it seems like this result is a combination of power management, Turbo Boost, scheduling inconsistencies, etc., and it's more difficult to measure than I previously thought. :(
SetProcessAffinityMask() does not guarantee you will have one thread per core; only that the threads you have will run on the cores you have allowed.
Perhaps the OS is scheduling differently.
Also, I'm surprised 1 and 2 are on core 1. Usually, logical processor numbers interleave over physical cores, to provide an inherent load balancing. I would expect 1 and 3 to be on core 1, 2 and 4 to be on core 2.
No, not all cores are equal. Only one is the boot core. Furthermore, in many cases all IRQs (or at least IRQs from a majority of the devices) are directed to a single core.
More important to your observed behavior, not all sets of cores are equal. In a NUMA memory architecture (which have been relatively mainstream in x86 since Intel Hyperthreading and AMD Opteron), there's an ideal group of processors which can efficiently access a particular region of memory, and all other processors will pay a significant penalty to access that range.
With Hyperthreading, it's not main system memory that's connected non-uniformly, but L1 and L2 cache. If your process migrates between the two virtual processors associated to the same physical core, the cache remains valid. But if it migrates to the other physical core, cached data has to be copied and ownership transferred to the other cache. For some workloads, this could make a big difference.
It would be good to know what physical CPU this is, but I'm assuming from your phrasing about logical processors that there is 1 physical socket, 2 CPU cores, and hyperthreading is enabled giving you 4 logical processors.
The short answer is, for this complicated definition of "processor", no, not all processors are created equal. Hyperthreaded logical cores share execution resources, and if there's contention for those resources they won't be fast as separate physical cores. This sharing can take place at different levels for both hyperthreading and multicore processors (ALU, execution resources, cache at different levels, etc) but in broad terms, physical cores in the same socket won't be affected much by what the other core(s) is/are doing, and logical cores implemented by hyperthreading will be hugely affected by what their hypertwin is doing.
Another difference between different CPUs: As Ben said, your OS may process most hardware interrupts on a single CPU, which means that CPU will seem slower for other purposes, but I'd be surprised if the interrupt load is enough to impact performance anywhere near this much.
The results you got -- on processors A and B (being intentionally ambiguous about which 2 processors those are) you get double the performance of A alone, but on processors A and C you get approximately the same performance as A alone -- sure sound like hyperthreading is the difference, where A and C are hypertwins in the same physical core, and B is in the other physical core. You said that GetLogicalProcessorInformation() claims otherwise, but it's not unheard of for the BIOS tables on which that depends to have errors.
I would run Task Manager, keep an eye on loads on each CPU before you run your test to get an idea of how much else is going on and where Windows schedules it, then run your test again a few times, for different combinations of CPU affinity, and see if you can confirm or deny this theory.
Have you checked the return code from SetProcessAffinityMask to see if there was an error? If the call fails, you might get stuck on one logical processor. According to the documentation, you can only use the bits that are set in the result of GetProcessAffinityMask.
You say you've tried masks of 0x5, 0xA, and 0x9. I'd be curious to see the results with 0x3.

Mapping logical processors to physical processors

On a dual quad-core GetProcessAffinityMask (or the dialog from "Set affinity" in taskman.exe) will report eight logical processors. How do I find out which logical processor is on which physical processor? Especially: which logical processors are on the same physical processor?
EDIT: If it is not possible to do this programmatically, do anyone just know what the normal mapping is? Are the first four on the first processor and the second four on the second or are the odd numbered on the first and the even numbered on the second?
You can use Win32_Processor WMI class to query the number of cores, number of logical processors, architecture, cache memory and other information about the CPUs on the system.
To query information about the relationship between the logical processors in a system, you can use GetLogicalProcessorInformation API function.
In case you don't want to write the code yourself, SysInternal's handy coreinfo utility comes closest to answering your questions. It implements GetLogicalProcessorInformation as Mehrdad recommends. For a Xeon E5640 (quad core, 8 threads), you get from coreinfo:
c:\App\SysInternals>Coreinfo.exe -c
Coreinfo v3.0 - Dump information on system CPU and memory topology
Copyright (C) 2008-2011 Mark Russinovich
Sysinternals - www.sysinternals.com
Logical to Physical Processor Map:
**------ Physical Processor 0 (Hyperthreaded)
--**---- Physical Processor 1 (Hyperthreaded)
----**-- Physical Processor 2 (Hyperthreaded)
------** Physical Processor 3 (Hyperthreaded)
There are 8 * for the 8 hyperthreads, two per core, as expected for this chip. What's not clear, though, is how the arrangement of * matches up with the list of logical processors as Windows presents them. For instance, Task Manager gives me a dialog for assigning the processor affinity, labeled CPU 0 through CPU 7, for any process. It's fair (but not necessary) to assume that you can take coreinfo's output and number the logical processors left-to-right. So "CPU 5" would be the second hyperthread running on physical processor 2.
The numbering is done in a sequential manner: first all physical cores followed by the logical cores [1] .
[1] CPU Numbering on a hypertheading enabled system

Resources