What are the uses of the fail predicate in Prolog? - prolog

I can't come up with a situation where I would need it.

Elegant systems provide false/0 as a declarative synonym for the imperative fail/0. An example where it is useful is when you manually want to force backtracking for side-effects, like:
?- between(1,3,N), format("line ~w\n", [N]), false.
line 1
line 2
line 3
Instead of false/0, you can also use any goal that fails, for example a bit shorter:
?- between(1,3,N), format("line ~w\n", [N]), 0=1.
line 1
line 2
line 3
Thus, false/0 is not strictly needed but quite nice.
EDIT: I sometimes see beginners who want to state for example "my relation does not hold for the empty list", and then add:
my_relation([]) :- false.
to their code. This is not necessary, and not a good example of using false/0, except for example in failure slices that are programmatically generated. Instead, concentrate on stating the things that hold about your relation. In this case, just leave out the entire clause, and define the relation only for lists that are not empty, i.e., have at least one element:
my_relation([L|Ls]) :- etc.
or, if you are describing other terms in addition to lists as well, use a constraint like:
my_relation(T) :- dif(T, []), etc.
Given only either (or even both) of these two clauses, the query ?- my_relation([]). will automatically fail. It is not necessary to introduce an additional clause which never succeeds for that purpose.

Explicit failure. fail is often used in conjunction with cut: ... !, fail. to enforce failure.
For all construct. Explicit usage of fail/false to enumerate via backtracking is a very error prone activity. Consider a case:
... ( generator(X), action(X), fail ; true ), ...
The idea is thus to "do" action for all X. But what happens, if action(X) fails? This construct simply continues with the next candidate — as if nothing happened. In this manner certain errors may remain undetected for very long.
For such cases it is better to use \+ ( generator(X), \+ action(X) ) which fails, should action(X) fail for some X. Some systems offer this as a built-in forall/2. Personally, I prefer to use \+ in this case because the \+ is a bit clearer that the construct does not leave a binding.
Failure-slice. For diagnostic purposes it is often useful to add on purpose false into your programs. See failure-slice for more details.

One case (taken from Constraint Logic Programming using Eclipse) is an implementation of not/1:
:- op(900, fy, not).
not Q :- Q, !, fail.
not _ .
If Q succeeds, the cut (!) causes the second not clause to be discarded, and the fail ensures a negative result. If Q fails, then the second not clause fires first.

Another use for fail is to force backtracking through alternatives when using predicates with side effects:
writeall(X) :- member(A,X), write(A), fail.
writeall(_).
Some people might not consider this particularly good programming style though. :)

fail/0 is a special symbol that will immediately fail when prolog encounters it as a goal.
fail is often used in conjunction with CUT(!) to enforce failure.
like(me,X) :- chess(X),!,fail.
like(me,X) :- games(X).

Related

Prolog parsing malfunctioning

My code takes an expression like or(lit(true),lit(X)),X) and outputs it as a list of lists.
tocnf(Tree, Expr) :-
trans(Tree ,Expr, []).
trans(lit(X)) -->bbool(X).
trans(or(lit(X1),lit(X2))) --> bconj(X1), bdisj(X2).
trans(and(lit(X1),lit(X2))) --> bbool(X1), bconj(X2).
bdisj(Conj) --> bconj(Conj).
bconj(Bool) --> bbool(Bool).
bbool(X) --> [[X]].
this code should take something like
tocnf(lit(X),X)
output it as
[[X]]
or
tocnf(or(lit(true),lit(X)),X)
and output it as
[[true],[X]].
Question is why when I do
tocnf(or(lit(true), and(lit(X),lit(true))),X)
it outputs
false.
Preliminaries
First, a note on style: You should always use the phrase/2 interface to access DCGs, so write tocnf/2 as:
tocnf(Tree, Expr) :-
phrase(trans(Tree), Expr).
Further, tocnf/2 is a rather imperative name, since it implies a direction of use ("to" CNF). However, the relation also makes sense in other directions, for example to generate answers. Therefore, try to find a better name, that does justice to this general nature of Prolog. I leave this as an exercise.
Declarative debugging
Now, on to your actual question. Apply declarative debugging to find the reason for the failure.
We start with the query you posted:
?- tocnf(or(lit(true), and(lit(X),lit(true))), X).
false.
This means that the program is unexpectedly too specific: It fails in a case we expect to succeed.
Now, we generalize the query, to find simpler cases that still fail. This is completely admissible because your program is written using the monotonic subset of Prolog, as is highly recommended to make declarative debugging applicable.
To generalize the query, I use variables instead of some subterms. For example:
?- tocnf(or(lit(_), and(lit(X),lit(true))), X).
false.
Aha! This still fails, and therefore every more specific query will also fail.
So, we proceed like this, using variables instead of some subterms:
?- tocnf(or(lit(_), and(lit(X),lit(_))), X).
false.
?- tocnf(or(_, and(lit(X),lit(_))), X).
false.
?- tocnf(or(_, and(_,lit(_))), X).
false.
?- tocnf(or(_, and(_,_)), X).
false.
All of these queries also fail.
Now, we take it just one step further:
?- tocnf(or(_, _), X).
X = [[_G793], [_G795]].
Aha! So we have found a case that succeeds, and one slightly more specific though still very simple case that fails:
?- tocnf(or(_, and(_,_)), X).
false.
This is the case I would start with: Think about why your relation does not work for terms of the form or(_, and(_,_)).
Automated solution
A major attraction of pure monotonic Prolog is that the reasoning above can be automated:
The machine should find the reason for the failure, so that we can focus on more important tasks.
One way to do this was generously made available by Ulrich Neumerkel.
To try it out, you need to install:
library(diadem) and
library(lambda).
Now, to recapitulate: We have found a query that unexpectedly fails. It was:
?- tocnf(or(lit(true), and(lit(X),lit(true))), X).
false.
To find a reason for this, we first load library(diadem):
?- use_module(library(diadem)).
true.
Then, we repost the query with a slight twist:
?- tocnf(or(lit(true), and(lit(X),lit(true))), X).?Generalization.
That is, I have simply appended ?Generalization. to the previous query.
In response, we get:
Generalization = tocnf(or(_, and(_, _)), _) .
Thus, Generalization is a more general goal that still fails. Since the Prolog program we are considering is completely pure and monotonic, we know that every more specific query will also fail. Therefore, I suggest you focus on this simpler and more general case, which was found automatically in this case, and is the same goal we also found manually after several steps.
Unexpected failure is a common issue when learning Prolog, and automated declarative debugging lets you quickly find the reasons.

Custom subset not backtracking

I'm new to prolog and I've been having trouble with some homework.
On some part of my code I have to generate subsets of a given set on backtracking. Meaning, the code should try for a subset, and when it fails the next condition, try the next subset. I have done some research and the default function subset won't backtrack because as explained in this question both arguments are input arguments. So I built a custom one, which still isn't backtracking. Can you give me a hint on what I'm failing on? Here's my code:
numNutrients(8).
product(milk,[2,4,6]).
product(porkChops,[1,8]).
product(yoghurt,[3,1]).
product(honey,[5,7]).
product(plastic,[3,5,2]).
product(magic,[5,7,8]).
nutrientlist(N,L):-findall(I,between(1,N,I),L).
subset2([],[]):-!.
subset2([X|T],[X|T2]):-
subset2(T,T2).
subset2([_|T],[T2]):-
subset2(T,T2).
shopping(K,L):-
numNutrients(J),
nutrientlist(J,N),
findall(P,product(P,_),Z),
subset2(X,Z),
length(X,T),
T =< K,
covers(X,N),
L = X.
covers(_,[]):-!.
covers([X|L],N):-
product(X,M),
subset2(M,N),
subtract(N,M,T),
covers(L,T).
main:-
shopping(5,L),
write(L).
The problem is on predicate shopping(K,L). When it gets to predicate subset2, it gives the whole set, which has length 6 (not 5), then fails and doesn't backtrack. Since all previous predicates can't backtrack it just fails.
So, why doesn't subset2 backtrack?
Thank you for your time.
Primary focus: subset2/2
First, let us focus only on the predicate that shows different properties from those you expect.
In your case, this is only subset2/2, defined by you as:
subset2([], []) :- !.
subset2([X|T], [X|T2]) :-
subset2(T, T2).
subset2([_|T], [T2]) :-
subset2(T, T2).
I will now use declarative debugging to locate the cause of the problem.
For this method to apply, I remove the !/0, because declarative debugging works best on pure and monotonic logic programs. See logical-purity for more information. Thus, we shall work on:
subset2([], []).
subset2([X|T], [X|T2]) :-
subset2(T, T2).
subset2([_|T], [T2]) :-
subset2(T, T2).
Test cases
Let us first construct a test case that yields unintended answers. For example:
?- subset2([a], [a,b]).
false.
That obviously not intended. Can we generalize the test case? Yes:
?- subset2([a], [a,b|_]).
false.
So, we have now an infinite family of examples that yield wrong results.
Exercise: Are there also cases where the program is too general, i.e., test cases that succeed although they should fail?
Locating mistakes
Why have we seen unintended failure in the cases above? To locate these mistakes, let us generalize the program.
For example:
subset2(_, []).
subset2([_|T], [_|T2]) :-
subset2(T, T2).
subset2(_, [T2]) :-
subset2(T, T2).
Even with this massive generalization, we still have:
?- subset2([a], [a,b|_]).
false.
That is, we have many cases where we expect the query to succeed, but it fails. This means that the remaining program, even though it is a massive generalization of the original program, is still too specific.
Correcting the program
To make the shown cases succeed, we have to either:
add clauses that describe the cases we need
or change the existing clauses to cover these cases too.
For example, a way out would be to add the following clause to the database:
subset2([a], [a,b|_]).
We could even generalize it to:
subset2([a], [a|_]).
Adding either or both of these clauses to the program would make the query succeed:
?- subset2([a], [a,b|_]).
true.
However, that is of course not the general definition of subset2/2 we are looking for, since it would for example still fail in cases like:
?- subset2([x], [x,y|_]).
false.
Therefore, let us go with the other option, and correct the existing definition. In particular, let us consider the last clause of the generalized program:
subset2(_, [T2]) :-
subset2(T, T2).
Note that this only holds if the second argument is a list with exactly one element which is subject to further constraints. This seems way too specific!
Therefore, I recommend you start by changing this clause so that it at least makes the test cases collected so far all succeed. Then, add the necessary specializations to make it succeed precisely for the intended cases.

Prolog - Return result instead of printing in algorithm

I know there is technically no 'return' in Prolog but I did not know how to formulate the question otherwise.
I found some sample code of an algorithm for finding routes between metro stations. It works well, however it is supposed to just print the result so it makes it hard to be extended or to do a findall/3 for example.
% direct routes
findRoute(X,Y,Lines,Output) :-
line(Line,Stations),
\+ member(Line,Lines),
member(X,Stations),
member(Y,Stations),
append(Output,[[X,Line,Y]],NewOutput),
print(NewOutput).
% needs intermediate stop
findRoute(X,Y,Lines,Output) :-
line(Line,Stations),
\+ member(Line,Lines),
member(X,Stations),
member(Intermediate,Stations),
X\=Intermediate,Intermediate\=Y,
append(Output,[[X,Line,Intermediate]],NewOutput),
findRoute(Intermediate,Y,[Line|Lines],NewOutput).
line is a predicate with an atom and a list containing the stations.
For ex: line(s1, [first_stop, second_stop, third_stop])
So what I am trying to do is get rid of that print at line 11 and add an extra variable to my rule to store the result for later use. However I failed miserably because no matter what I try it either enters infinite loop or returns false.
Now:
?- findRoute(first_stop, third_stop, [], []).
% prints [[first_stop,s1,third_stop]]
Want:
?- findRoute(first_stop, third_stop, [], R).
% [[first_stop,s1,third_stop]] is stored in R
Like you, I also see this pattern frequently among Prolog beginners, especially if they are using bad books and other material:
solve :-
.... some goals ...
compute(A),
write(A).
Almost every line in the above is problematic, for the following reasons:
"solve" is imperative. This does not make sense in a declarative languague like Prolog, because you can use predicates in several directions.
"compute" is also imperative.
write/1 is a side-effect, and its output is only available on the system terminal. This gives us no easy way to actually test the predicate.
Such patterns should always simply look similar to:
solution(S) :-
condition1(...),
condition2(...),
condition_n(S).
where condition1 etc. are simply pure goals that describe what it means that S is a solution.
When querying
?- solution(S).
then bindings for S will automatically be printed on the toplevel. Let the toplevel do the printing for you!
In your case, there is a straight-forward fix: Simply make NewOutput one of the arguments, and remove the final side-effect:
route(X, Y, Lines, Output, NewOutput) :-
line(Line, Stations),
\+ member(Line, Lines),
member(X, Stations),
member(Y, Stations),
append(Output, [[X,Line,Y]], NewOutput).
Note also that I have changed the name to just route/5, because the predicate makes sense also if the arguments are all already instantiated, which is useful for testing etc.
Moreover, when describing lists, you will often benefit a lot from using dcg notation.
The code will look similar to this:
route(S, S, _) --> []. % case 1: already there
route(S0, S, Lines) --> % case 2: needs intermediate stop
{ line_stations(Line, Stations0),
maplist(dif(Line), Lines),
select(S0, Stations0, Stations),
member(S1, Stations) },
[link(S0,Line,S1)],
route(S1, S, [Line|Lines]).
Conveniently, you can use this to describe the concatenation of lists without needing append/3 so much. I have also made a few other changes to enhance purity and readability, and I leave figuring out the exact differences as an easy exercise.
You call this using the DCG interface predicate phrase/2, using:
?- phrase(route(X,Y,[]), Rs).
where Rs is the found route. Note also that I am using terms of the form link/3 to denote the links of the route. It is good practice to use dedicated terms when the arity is known. Lists are for example good if you do not know beforehand how many elements you need to represent.

Making "deterministic success" of Prolog goals explicit

The matter of deterministic success of some Prolog goal has turned up time and again in—at least—the following questions:
Reification of term equality/inequality
Intersection and union of 2 lists
Remove duplicates in list (Prolog)
Prolog: How can I implement the sum of squares of two largest numbers out of three?
Ordering lists with constraint logic programming)
Different methods were used (e.g., provoking certain resource errors, or looking closely at the exact answers given by the Prolog toplevel), but they all appear somewhat ad-hack to me.
I'm looking for a generic, portable, and ISO-conformant way to find out if the execution of some Prolog goal (which succeeded) left some choice-point(s) behind. Some meta predicate, maybe?
Could you please hint me in the right direction? Thank you in advance!
Good news everyone: setup_call_cleanup/3 (currently a draft proposal for ISO) lets you do that in a quite portable and beautiful way.
See the example:
setup_call_cleanup(true, (X=1;X=2), Det=yes)
succeeds with Det == yes when there are no more choice points left.
EDIT: Let me illustrate the awesomeness of this construct, or rather of the very closely related predicate call_cleanup/2, with a simple example:
In the excellent CLP(B) documentation of SICStus Prolog, we find in the description of labeling/1 a very strong guarantee:
Enumerates all solutions by backtracking, but creates choicepoints only if necessary.
This is really a strong guarantee, and at first it may be hard to believe that it always holds. Luckily for us, it is extremely easy to formulate and generate systematic test cases in Prolog to verify such properties, in essence using the Prolog system to test itself.
We start with systematically describing what a Boolean expression looks like in CLP(B):
:- use_module(library(clpb)).
:- use_module(library(lists)).
sat(_) --> [].
sat(a) --> [].
sat(~_) --> [].
sat(X+Y) --> [_], sat(X), sat(Y).
sat(X#Y) --> [_], sat(X), sat(Y).
There are in fact many more cases, but let us restrict ourselves to the above subset of CLP(B) expressions for now.
Why am I using a DCG for this? Because it lets me conveniently describe (a subset of) all Boolean expressions of specific depth, and thus fairly enumerate them all. For example:
?- length(Ls, _), phrase(sat(Sat), Ls).
Ls = [] ;
Ls = [],
Sat = a ;
Ls = [],
Sat = ~_G475 ;
Ls = [_G475],
Sat = _G478+_G479 .
Thus, I am using the DCG only to denote how many available "tokens" have already been consumed when generating expressions, limiting the total depth of the resulting expressions.
Next, we need a small auxiliary predicate labeling_nondet/1, which acts exactly as labeling/1, but is only true if a choice-point still remains. This is where call_cleanup/2 comes in:
labeling_nondet(Vs) :-
dif(Det, true),
call_cleanup(labeling(Vs), Det=true).
Our test case (and by this, we actually mean an infinite sequence of small test cases, which we can very conveniently describe with Prolog) now aims to verify the above property, i.e.:
If there is a choice-point, then there is a further solution.
In other words:
The set of solutions of labeling_nondet/1 is a proper subset of that of labeling/1.
Let us thus describe what a counterexample of the above property looks like:
counterexample(Sat) :-
length(Ls, _),
phrase(sat(Sat), Ls),
term_variables(Sat, Vs),
sat(Sat),
setof(Vs, labeling_nondet(Vs), Sols),
setof(Vs, labeling(Vs), Sols).
And now we use this executable specification in order to find such a counterexample. If the solver works as documented, then we will never find a counterexample. But in this case, we immediately get:
| ?- counterexample(Sat).
Sat = a+ ~_A,
sat(_A=:=_B*a) ? ;
So in fact the property does not hold. Broken down to the essence, although no more solutions remain in the following query, Det is not unified with true:
| ?- sat(a + ~X), call_cleanup(labeling([X]), Det=true).
X = 0 ? ;
no
In SWI-Prolog, the superfluous choice-point is obvious:
?- sat(a + ~X), labeling([X]).
X = 0 ;
false.
I am not giving this example to criticize the behaviour of either SICStus Prolog or SWI: Nobody really cares whether or not a superfluous choice-point is left in labeling/1, least of all in an artificial example that involves universally quantified variables (which is atypical for tasks in which one uses labeling/1).
I am giving this example to show how nicely and conveniently guarantees that are documented and intended can be tested with such powerful inspection predicates...
... assuming that implementors are interested to standardize their efforts, so that these predicates actually work the same way across different implementations! The attentive reader will have noticed that the search for counterexamples produces quite different results when used in SWI-Prolog.
In an unexpected turn of events, the above test case has found a discrepancy in the call_cleanup/2 implementations of SWI-Prolog and SICStus. In SWI-Prolog (7.3.11):
?- dif(Det, true), call_cleanup(true, Det=true).
dif(Det, true).
?- call_cleanup(true, Det=true), dif(Det, true).
false.
whereas both queries fail in SICStus Prolog (4.3.2).
This is the quite typical case: Once you are interested in testing a specific property, you find many obstacles that are in the way of testing the actual property.
In the ISO draft proposal, we see:
Failure of [the cleanup goal] is ignored.
In the SICStus documentation of call_cleanup/2, we see:
Cleanup succeeds determinately after performing some side-effect; otherwise, unexpected behavior may result.
And in the SWI variant, we see:
Success or failure of Cleanup is ignored
Thus, for portability, we should actually write labeling_nondet/1 as:
labeling_nondet(Vs) :-
call_cleanup(labeling(Vs), Det=true),
dif(Det, true).
There is no guarantee in setup_call_cleanup/3 that it detects determinism, i.e. missing choice points in the success of a goal. The 7.8.11.1 Description draft proposal only says:
c) The cleanup handler is called exactly once; no later than
upon failure of G. Earlier moments are:
If G is true or false, C is called at an implementation
dependent moment after the last solution and after the last
observable effect of G.
So there is currently no requirement that:
setup_call_cleanup(true, true, Det=true)
Returns Det=true in the first place. This is also reflected in the test cases 7.8.11.4 Examples that the draf proposal gives, we find one test case which says:
setup_call_cleanup(true, true, X = 2).
Either: Succeeds, unifying X = 2.
Or: Succeeds.
So its both a valid implementation, to detect determinism and not to detect determinism.

Prolog list membership, multiple results returned

I have a standard procedure for determining membership of a list:
member(X, [X|_]).
member(X, [_|T]) :- member(X, T).
What I don't understand is why when I pose the following query:
?- member(a,[a,b]).
The result is
True;
False.
I would have thought that on satisfying the goal using the first rule (as a is the head of the list) True would be returned and that would be the end of if. It seems as if it is then attempting to satisfy the goal using the second rule and failing?
Prolog interpreter is SWI-Prolog.
Let's consider a similar query first: [Edit: Do this without adding your own definition ; member/2 is already defined]
?- member(a,[b,a]).
true.
In this case you get the optimal answer: There is exactly one solution. But when exchanging the elements in the list we get:
?- member(a,[a,b]).
true
; false.
Logically, both are just the affirmation that the query is true.
The reason for the difference is that in the second query the answer true is given immediately upon finding a as element of the list. The remaining list [b] does not contain a fitting element, but this is not yet examined. Only upon request (hitting SPACE or ;) the rest of the list is tried with the result that there is no further solution.
Essentially, this little difference gives you a hint when a computation is completely finished and when there is still some work to do. For simple queries this does not make a difference, but in more complex queries these open alternatives (choicepoints) may accumulate and use up memory.
Older toplevels always asked if you want to see a further solution, even if there was none.
Edit:
The ability to avoid asking for the next answer, if there is none, is extremely dependent on the very implementation details. Even within the same system, and the same program loaded you might get different results. In this case, however, I was using SWI's built-in definition for member/2 whereas you used your own definition, which overwrites the built-in definition.
SWI uses the following definition as built-in which is logically equivalent to yours but makes avoiding unnecessary choice points easier to SWI — but many other systems cannot profit from this:
member(B, [C|A]) :-
member_(A, B, C).
member_(_, A, A).
member_([C|A], B, _) :-
member_(A, B, C).
To make things even more complex: Many Prologs have a different toplevel that does never ask for further answers when the query does not contain a variable. So in those systems (like YAP) you get a wrong impression.
Try the following query to see this:
?- member(X,[1]).
X = 1.
SWI is again able to determine that this is the only answer. But YAP, e.g., is not.
Are you using the ";" operator after the first result then pushing return? I believe this is asking the query to look for more results and as there are none it is coming up as false.
Do you know about Prolog's cut - !?
If you change member(X, [X|_]). to member(X, [X|_]) :- !. Prolog will not try to find another solution after the first one.

Resources