Calculating length of objects in binary image - algorithm - algorithm

I need to calculate length of the object in a binary image (maximum distance between the pixels inside the object). As it is a binary image, so we might consider it a 2D array with values 0 (white) and 1 (black). The thing I need is a clever (and preferably simple) algorithm to perform this operation. Keep in mind there are many objects in the image.
The image to clarify:
Sample input image:

I think the problem is simple if the boundary of an object is convex and no three vertices are on a line (i.e. no vertex can be removed without changing the polygon): Then you can just pick two points at random and use a simple gradient-descent type search to find the longest line:
Start with random vertices A, B
See if the line A' - B is longer than A - B where A' is the point left of A; if so, replace A with A'
See if the line A' - B is longer than A - B where A' is the point right of A; if so, replace A with A'
Do the same for B
repeat until convergence
So I'd suggest finding the convex hull for each seed blob, removing all "superfluos" vertices (to ensure convergence) and running the algorithm above.
Constructing a convex hull is an O(n log n) operation IIRC, where n is the number of boundary pixels. Should be pretty efficient for small objects like these. EDIT: I just remembered that the O(n log n) for the convex hull algorithm was needed to sort the points. If the boundary points are the result of a connected component analysis, they are already sorted. So the whole algorithm should run in O(n) time, where n is the number of boundary points. (It's a lot of work, though, because you might have to write your own convex-hull algorithm or modify one to skip the sort.)
Add: Response to comment
If you don't need 100% accuracy, you could simply fit an ellipse to each blob and calculate the length of the major axis: This can be computed from central moments (IIRC it's simply the square root if the largest eigenvalue of the covariance matrix), so it's an O(n) operation and can efficiently be calculated in a single sweep over the image. It has the additional advantage that it takes all pixels of a blob into account, not just two extremal points, i.e. it is far less affected by noise.

Find the major-axis length of the ellipse that has the same normalized second central moments as the region. In MATLAB you can use regionprops.

A very crude, brute-force approach would be to first identify all the edge pixels (any black pixel in the object adjacent to a non-black pixel) and calculate the distances between all possible pairs of edge pixels. The longest of these distances will give you the length of the object.
If the objects are always shaped like the ones in your sample, you could speed this up by only evaluating the pixels with the highest and lowest x and y values within the object.

I would suggest trying an "reverse" distance transform. In the magical world of mathematical morphology (sorry couldn't resist the alliteration) the distance transform gives you the closest distance of each pixel to its nearest boundary pixel. In your case, you are interested in the farthest distance to a boundary pixel, hence I have cleverly applied a "reverse" prefix.
You can find information on the distance transform here and here. I believe that matlab implements the distance transform as per here. That would lead me to believe that you can find an open source implementation of the distance transform in octave. Furthermore, it would not surprise me in the least if opencv implemented it.
I haven't given it much thought but its intuitive to me that you should be able to reverse the distance transform and calculate it in roughly the same amount of time as the original distance transform.

I think you could consider using a breadth first search algorithm.
The basic idea is that you loop over each row and column in the image, and if you haven't visited the node (a node is a row and column with a colored pixel) yet, then you would run the breadth first search. You would visit each node you possibly could, and keep track of the max and min points for the object.
Here's some C++ sample code (untested):
#include <vector>
#include <queue>
#include <cmath>
using namespace std;
// used to transition from given row, col to each of the
// 8 different directions
int dr[] = { -1, 0, 1, -1, 1, -1, 0, 1 };
int dc[] = { -1, -1, -1, 0, 0, 1, 1, 1 };
// WHITE or COLORED cells
const int WHITE = 0;
const int COLORED = 1;
// number of rows and columns
int nrows = 2000;
int ncols = 2000;
// assume G is the image
int G[2000][2000];
// the "visited array"
bool vis[2000][2000];
// get distance between 2 points
inline double getdist(double x1, double y1, double x2, double y2) {
double d1 = x1 - x2;
double d2 = y1 - y2;
return sqrt(d1*d1+d2*d2);
}
// this function performs the breadth first search
double bfs(int startRow, int startCol) {
queue< int > q;
q.push(startRow);
q.push(startCol);
vector< pair< int, int > > points;
while(!q.empty()) {
int r = q.front();
q.pop();
int c = q.front();
q.pop();
// already visited?
if (vis[r][c])
continue;
points.push_back(make_pair(r,c));
vis[r][c] = true;
// try all eight directions
for(int i = 0; i < 8; ++i) {
int nr = r + dr[i];
int nc = c + dc[i];
if (nr < 0 || nr >= nrows || nc < 0 || nc >= ncols)
continue; // out of bounds
// push next node on queue
q.push(nr);
q.push(nc);
}
}
// the distance is maximum difference between any 2 points encountered in the BFS
double diff = 0;
for(int i = 0; i < (int)points.size(); ++i) {
for(int j = i+1; j < (int)points.size(); ++j) {
diff = max(diff,getdist(points[i].first,points[i].second,points[j].first,points[j].second));
}
}
return diff;
}
int main() {
vector< double > lengths;
memset(vis,false,sizeof vis);
for(int r = 0; r < nrows; ++r) {
for(int c = 0; c < ncols; ++c) {
if (G[r][c] == WHITE)
continue; // we don't care about cells without objects
if (vis[r][c])
continue; // we've already processed this object
// find the length of this object
double len = bfs(r,c);
lengths.push_back(len);
}
}
return 0;
}

Related

Should point on the edge of polygon be inside polygon?

Recently I've faced with one little but majour problem: is point on the edge of polygon be inside polygon?
What I mean - currently I am trying to implement 2D geometry library in JS for custom needs and there is method, lets say polygon.contains(point).
So my question is - when point is situated on one of the polygon's edges - as result the point is inside or outside of the polygon? Additional question for vertices: if point is right on top of polygon's vertex - is it inside or outside?
Algo that I've used is taken from here and looks like:
int pnpoly(int nvert, float *vertx, float *verty, float testx, float testy)
{
int i, j, c = 0;
for (i = 0, j = nvert-1; i < nvert; j = i++) {
if ( ((verty[i]>testy) != (verty[j]>testy)) &&
(testx < (vertx[j]-vertx[i]) * (testy-verty[i]) / (verty[j] - verty[i]) + vertx[i]) )
c = !c;
}
return c;
}
Also, there is a quote from the site:
PNPOLY partitions the plane into points inside the polygon and points outside the polygon. Points that are on the boundary are classified as either inside or outside.
And it is total true, in some situations it returns TRUE, and in some FALSE.
Actually, this is not what I'm needed. So my question is beginning to expand - which behaviour is correct when point is on the edge of polygon - is it inside or outside. And do you have a better algo with predictable behaviour?
UPDATE:
Okay, I'm found another algo, which is called "winding number" and to test this I'm using only polygons and points with integer values:
function isLeft(p0, p1, p2){
return ( Math.round((p1.x - p0.x) * (p2.y - p0.y)) - Math.round((p2.x - p0.x) * (p1.y - p0.y)) );
}
function polygonContainsPoint(polygon, point){
var i, j, pointi, pointj;
var count = 0;
var vertices = polygon.vertices;
var length = vertices.length;
for (i = 0; i < length; i++){
j = (i + 1) % length;
pointi = vertices[i];
pointj = vertices[j];
if (pointi.y > point.y){
if (pointj.y <= point.y && (isLeft(pointi, pointj, point) < 0)){
--count;
}
} else if (pointj.y > point.y && (isLeft(pointi, pointj, point) > 0)){
++count;
}
}
return 0 !== count;
}
As you can see there is no division; multiplication is wrapped into round() method, so there is no way for floating point errors. Anyway, I'm getting same result as with even-odd algo.
And I think I started to see the "pattern" in this strange behaviour: the left and top edges may tell that point is inside of polygon, but when you're tryed to put point on one of the right or bottom edges - it may return false.
This is not good for me. Maybe some of you know some algo with more predictable behaviour?
The simple answer to the question is that a point on the edge is neither inside, nor outside of polygon, it is on the boundary of the polygon - the third option. But typically it does not matter (as supported by your quotations), and what matters is to avoid the errors in classification of points, which are really deep inside or outside.
Point-in-polygon problem is sometimes called the Parity Algorithm:
Let r be the horizontal half-line whose left endpoint is the test point.
Count the number of intersections between r and the edges of the polygon. If that number is odd, then the test point lies within the polygon, and if the number is even, then it lies outside the polygon.
Here are some examples:
(a), (b) - not-degenerate cases, where half-line either does not intersect the edge or crosses it.
(c), (d), (e), (f) - four degenerate cases that have to be taken into account.
A correct answer is obtained if cases (c) and (e) are counted as one crossing and cases (d) and (f) are not counted at all. If we write the code for the above algorithm, we realize that a substantial amount of the efforts is required to cover the four degenerated cases.
With more complex algorithms and especially in 3D, the amount of efforts to support degenerate cases increases dramatically.
The above problem and explanation appear in the introduction to Simulation of Simplicity article by Herbert Edelsbrunner and Ernst Peter Mucke. And proposed solution is to get rid of all degenerations by virtual minimal perturbation of input points. After that a tested point will never be on the edge, but only inside or outside of polygon.

Find the biggest square constructed from a single number

Given a 2D matrix that consists of numbers 0-9, how do I find the largest square that is constructed from a single number?
For example,
12039487067
81111012389
01111111769
71181231987
11111891167
86171231222
17130471282
37111111222
47061902547
There are 3 squares:
starts at (1, 1) and ends at (4, 4)
starts at (2, 2) and ends at (7, 7)
starts at (5, 8) and ends at (7, 10)
The biggest square is the second one. And how do I do it if I have to find a rectangle?
I know the logic for finding solid square, but not when its hollow. Any ideas?
I'd go with something like: For every position in the array call a recursive subrutine that matches (X'+1, Y'') and (X'',Y'+1) with the first value. If some of those dont match start recursion with (X', Y''+1) and (X''+1,Y') until they meet again on the same spot where you can say you've got an square…
without backtracking that would also deal with the "weird" case in your example of (2,2)->(4,4)
It may help to first scan the matrix to compute auxiliary matrices left,up that measure the number of consecutive entries in each direction.
So, for example, left[2,5] would be equal to 3 because there are 3 consecutive elements to the left of element 2,5 with the same value.
For a matrix of size n*n these matrices can be computed in O(n^2) using straightforward dynamic programming.
Once you have these matrices you can check in O(1) time whether any particular candidate rectangle is valid by checking the corners.
This then gives an immediate O(n^3) algorithm for finding the best square (simply test each of the O(n^3) possible square locations), an an O(n^4) method for rectangles.
You can also get an O(n^3) method for finding the best rectangle
by fixing the top and bottom coordinates of the rectangle (O(n^2) choices) and then iterating across the matrix. You then need to consider at each x coordinate the following cases:
Can we continue the previous rectangle (possible if the colour at the top and bottom matches the current colour)
Can we complete the previous rectangle (possible if there is a connection from top to bottom with the current colour)
Otherwise, can we start a new rectangle (possible if there is a connection from top to bottom with a new colour)
All of these take O(1) by using the top matrix, and there are O(n) x coordinates, so altogether this takes O(n^3) to find the best rectangle outline.
This is simple solution for finding max square.
#include <iostream>
#include <vector>
#include <algorithm>
#include <set>
#include<cstring>
#include <math.h>
#include<cstdio>
#include<string>
#include <queue>
#include <list>
using namespace std;
bool flag = false;
char ch[100][100];
int findMxSq(int leftX, int upY, int rightX, int downY){
int mx = (rightX-leftX+1)*(downY-upY+1);
bool flag = true;
char c = ch[leftX][upY];
for(int i=leftX; i<=rightX; i++){
flag &= (c==ch[i][downY+1]);
}
if(flag) mx = max(mx, findMxSq(leftX,upY,rightX,downY+1));
flag = true;
for(int i=upY; i<=downY; i++){
flag &= (c==ch[rightX+1][i]);
}
if(flag) mx = max(mx, findMxSq(leftX,upY,rightX+1,downY));
return mx;
}
int main(){
memset(ch,'*',sizeof(ch));
for(int i=1; i<=9; i++)
for(int j=1; j<=11; j++)
cin>>ch[i][j];
int ans = 0;
for(int i=1; i<=9; i++)
for(int j=1; j<=11; j++)
ans = max(ans,findMxSq(i,j,i,j));
cout<<ans<<endl;
return 0;
}

Calculate area given list of directions

Let's say you're given a list of directions:
up, up, right, down, right, down, left, left
If you follow the directions, you will always return to the starting location. Calculate the area of the shape that you just created.
The shape formed by the directions above would look something like:
___
| |___
|_______|
Clearly, from the picture, you can see that the area is 3.
I tried to use a 2d matrix to trace the directions, but unsure how to get the area from that...
For example, in my 2d array:
O O
O O O
O O O
This is probably not a good way of handling this, any ideas?
Since the polygon you create has axis-aligned edges only, you can calculate the total area from vertical slabs.
Let's say we are given a list of vertices V. I assume we have wrapping in this list, so we can query V.next(v) for every vertex v in V. For the last one, the result is the first.
First, try to find the leftmost and rightmost point, and the vertex where the leftmost point is reached (in linear time).
x = 0 // current x-position
xMin = inf, xMax = -inf // leftmost and rightmost point
leftVertex = null // leftmost vertex
foreach v in V
x = x + (v is left ? -1 : v is right ? 1 : 0)
xMax = max(x, xMax)
if x < xMin
xMin = x
leftVertex = V.next(v)
Now we create a simple data structure: for every vertical slab we keep a max heap (a sorted list is fine as well, but we only need to repetitively fetch the maximum element in the end).
width = xMax - xMin
heaps = new MaxHeap[width]
We start tracing the shape from vertex leftVertex now (the leftmost vertex we found in the first step). We now choose that this vertex has x/y-position (0, 0), just because it is convenient.
x = 0, y = 0
v = leftVertex
do
if v is left
x = x-1 // use left endpoint for index
heaps[x].Add(y) // first dec, then store
if v is right
heaps[x].Add(y) // use left endpoint for index
x = x+1 // first store, then inc
if v is up
y = y+1
if v is down
y = y-1
v = V.next(v)
until v = leftVertex
You can build this structure in O(n log n) time, because adding to a heap costs logarithmic time.
Finally, we need to compute the area from the heap. For a well-formed input, we need to get two contiguous y-values from the heap and subtract them.
area = 0
foreach heap in heaps
while heap not empty
area += heap.PopMax() - heap.PopMax() // each polygon's area
return area
Again, this takes O(n log n) time.
I ported the algorithm to a java implementation (see Ideone). Two sample runs:
public static void main (String[] args) {
// _
// | |_
// |_ _ |
Direction[] input = { Direction.Up, Direction.Up,
Direction.Right, Direction.Down,
Direction.Right, Direction.Down,
Direction.Left, Direction.Left };
System.out.println(computeArea(input));
// _
// |_|_
// |_|
Direction[] input2 = { Direction.Up, Direction.Right,
Direction.Down, Direction.Down,
Direction.Right, Direction.Up,
Direction.Left, Direction.Left };
System.out.println(computeArea(input2));
}
Returns (as expected):
3
2
Assuming some starting point (say, (0,0)) and the y direction is positive upwards:
left adds (-1,0) to the last point.
right adds (+1,0) to the last point.
up adds (0,+1) to the last point.
down adds (0,-1) to the last point.
A sequence of directions would then produce a list of (x,y) vertex co-ordinates from which the area of the resulting (implied closed) polygon can be found from How do I calculate the surface area of a 2d polygon?
EDIT
Here's an implementation and test in Python. The first two functions are from the answer linked above:
def segments(p):
return zip(p, p[1:] + [p[0]])
def area(p):
return 0.5 * abs(sum(x0*y1 - x1*y0
for ((x0, y0), (x1, y1)) in segments(p)))
def mkvertices(pth):
vert = [(0,0)]
for (dx,dy) in pth:
vert.append((vert[-1][0]+dx,vert[-1][1]+dy))
return vert
left = (-1,0)
right = (+1,0)
up = (0,+1)
down = (0,-1)
# _
# | |_
# |__|
print (area(mkvertices([up, up, right, down, right, down, left, left])))
# _
# |_|_
# |_|
print (area(mkvertices([up, right, down, down, right, up, left, left])))
Output:
3.0
0.0
Note that this approach fails for polygons that contain intersecting lines as in the second example.
This can be implemented in place using Shoelace formula for simple polygons.
For each segment (a, b) we have to calculate (b.x - a.x)*(a.y + b.y)/2. The sum over all segments is the signed area of a polygon.
What's more, here we're dealing only with axis aligned segments of length 1. Vertical segments can be ignored because b.x - a.x = 0.
Horizontal segments have a.y + b.y / 2 = a.y = b.y and b.x - a.x = +-1.
So in the end we only have to keep track of y and the area added is always +-y
Here is a sample C++ code:
#include <iostream>
#include <vector>
enum struct Direction
{
Up, Down, Left, Right
};
int area(const std::vector<Direction>& moves)
{
int area = 0;
int y = 0;
for (auto move : moves)
{
switch(move)
{
case Direction::Left:
area += y;
break;
case Direction::Right:
area -= y;
break;
case Direction::Up:
y -= 1;
break;
case Direction::Down:
y += 1;
break;
}
}
return area < 0 ? -area : area;
}
int main()
{
std::vector<Direction> moves{{
Direction::Up,
Direction::Up,
Direction::Right,
Direction::Down,
Direction::Right,
Direction::Down,
Direction::Left,
Direction::Left
}};
std::cout << area(moves);
return 0;
}
I assume there should be some restrictions on the shapes you are drawing (Axis aligned, polygonal graph, closed, non intersecting lines) to be able to calculate the area.
Represent the the shape using segments, each segments consists of two points, each has two coordinates: x and y.
Taking these assumptions into consideration, we can say that any horizontal segment has one parallel segment that has the same x dimensions for its two points but different y dimensions.
The surface area between these two segments equal the hight difference between them.Summing the area for all the horizontal segments gives you the total surface area of the shape.

Rotating a two dimensional array by 90 degrees

I am studying this piece of code on rotating an NxN matrix; I have traced the program countless times, and I sort of understand how the actual rotation happens. It basically rotates the corners first and the elements after the corners in a clockwise direction. I just do not understand a couple of lines, and the code is still not "driven home" in my brain, so to speak. Please help. I am rotating it 90 degrees, given a 4x4 matrix as my tracing example.
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
becomes
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
public static void rotate(int[][] matrix, int n){
for(int layer=0; layer < n/2; ++layer) {
int first=layer; //It moves from the outside in.
int last=n-1-layer; //<--This I do not understand
for(int i=first; i<last;++i){
int offset=i-first; //<--A bit confusing for me
//save the top left of the matrix
int top = matrix[first][i];
//shift left to top;
matrix[first][i]=matrix[last-offset][first];
/*I understand that it needs
last-offset so that it will go up the column in the matrix,
and first signifies it's in the first column*/
//shift bottom to left
matrix[last-offset][first]=matrix[last][last-offset];
/*I understand that it needs
last-offset so that the number decreases and it may go up the column (first
last-offset) and left (latter). */
//shift right to bottom
matrix[last][last-offset]=matrix[i][last];
/*I understand that it i so that in the next iteration, it moves down
the column*/
//rightmost top corner
matrix[i][last]=top;
}
}
}
It's easier to understand an algorithm like this if you draw a diagram, so I made a quick pic in Paint to demonstrate for a 5x5 matrix :D
The outer for(int layer=0; layer < n/2; ++layer) loop iterates over the layers from outside to inside. The outer layer (layer 0) is depicted by coloured elements. Each layer is effectively a square of elements requiring rotation. For n = 5, layer will take on values from 0 to 1 as there are 2 layers since we can ignore the centre element/layer which is unaffected by rotation. first and last refer to the first and last rows/columns of elements for a layer; e.g. layer 0 has elements from Row/Column first = 0 to last = 4 and layer 1 from Row/Column 1 to 3.
Then for each layer/square, the inner for(int i=first; i<last;++i) loop rotates it by rotating 4 elements in each iteration. Offset represents how far along the sides of the square we are. For our 5x5 below, we first rotate the red elements (offset = 0), then yellow (offset = 1), then green and blue. Arrows 1-5 demonstrate the 4-element rotation for the red elements, and 6+ for the rest which are performed in the same fashion. Note how the 4-element rotation is essentially a 5-assignment circular swap with the first assignment temporarily putting aside an element. The //save the top left of the matrix comment for this assignment is misleading since matrix[first][i] isn't necessarily the top left of the matrix or even the layer for that matter. Also, note that the row/column indexes of elements being rotated are sometimes proportional to offset and sometimes proportional to its inverse, last - offset.
We move along the sides of the outer layer (delineated by first=0 and last=4) in this manner, then move onto the inner layer (first = 1 and last = 3) and do the same thing there. Eventually, we hit the centre and we're done.
This trigger a WTF. The easiest way to rotate a matrix in place is by
first transposing the matrix (swap M[i,j] with M[j,i])
then swapping M[i,j] with M[i, nColumns - j]
When matrices are column-major, the second operation is swapping columns, and hence has good data locality properties. If the matrix is row major, then first permute rows, and then transpose.
Here is a recursive way of solving this:
// rotating a 2 D array (mXn) by 90 degrees
public void rotateArray(int[][] inputArray) {
System.out.println("Input Array: ");
print2D(inputArray);
rotateArray(inputArray, 0, 0, inputArray.length - 1,
inputArray[0].length - 1);
System.out.println("\n\nOutput Array: ");
print2D(inputArray);
}
public void rotateArray(int[][] inputArray, int currentRow,
int currentColumn, int lastRow, int lastColumn) {
// condition to come out of recursion.
// if all rows are covered or all columns are covered (all layers
// covered)
if (currentRow >= lastRow || currentColumn >= lastColumn)
return;
// rotating the corner elements first
int top = inputArray[currentRow][currentColumn];
inputArray[currentRow][currentColumn] = inputArray[lastRow][currentColumn];
inputArray[lastRow][currentColumn] = inputArray[lastRow][lastColumn];
inputArray[lastRow][lastColumn] = inputArray[currentRow][lastColumn];
inputArray[currentRow][lastColumn] = top;
// clockwise rotation of remaining elements in the current layer
for (int i = currentColumn + 1; i < lastColumn; i++) {
int temp = inputArray[currentRow][i];
inputArray[currentRow][i] = inputArray[lastRow - i][currentColumn];
inputArray[lastRow - i][currentColumn] = inputArray[lastRow][lastColumn
- i];
inputArray[lastRow][lastColumn - i] = inputArray[currentRow + i][lastColumn];
inputArray[currentRow + i][lastColumn] = temp;
}
// call recursion on remaining layers
rotateArray(inputArray, ++currentRow, ++currentColumn, --lastRow,
--lastColumn);
}

How do I efficiently determine if a polygon is convex, non-convex or complex?

From the man page for XFillPolygon:
If shape is Complex, the path may self-intersect. Note that contiguous coincident points in the path are not treated as self-intersection.
If shape is Convex, for every pair of points inside the polygon, the line segment connecting them does not intersect the path. If known by the client, specifying Convex can improve performance. If you specify Convex for a path that is not convex, the graphics results are undefined.
If shape is Nonconvex, the path does not self-intersect, but the shape is not wholly convex. If known by the client, specifying Nonconvex instead of Complex may improve performance. If you specify Nonconvex for a self-intersecting path, the graphics results are undefined.
I am having performance problems with fill XFillPolygon and, as the man page suggests, the first step I want to take is to specify the correct shape of the polygon. I am currently using Complex to be on the safe side.
Is there an efficient algorithm to determine if a polygon (defined by a series of coordinates) is convex, non-convex or complex?
You can make things a lot easier than the Gift-Wrapping Algorithm... that's a good answer when you have a set of points w/o any particular boundary and need to find the convex hull.
In contrast, consider the case where the polygon is not self-intersecting, and it consists of a set of points in a list where the consecutive points form the boundary. In this case it is much easier to figure out whether a polygon is convex or not (and you don't have to calculate any angles, either):
For each consecutive pair of edges of the polygon (each triplet of points), compute the z-component of the cross product of the vectors defined by the edges pointing towards the points in increasing order. Take the cross product of these vectors:
given p[k], p[k+1], p[k+2] each with coordinates x, y:
dx1 = x[k+1]-x[k]
dy1 = y[k+1]-y[k]
dx2 = x[k+2]-x[k+1]
dy2 = y[k+2]-y[k+1]
zcrossproduct = dx1*dy2 - dy1*dx2
The polygon is convex if the z-components of the cross products are either all positive or all negative. Otherwise the polygon is nonconvex.
If there are N points, make sure you calculate N cross products, e.g. be sure to use the triplets (p[N-2],p[N-1],p[0]) and (p[N-1],p[0],p[1]).
If the polygon is self-intersecting, then it fails the technical definition of convexity even if its directed angles are all in the same direction, in which case the above approach would not produce the correct result.
This question is now the first item in either Bing or Google when you search for "determine convex polygon." However, none of the answers are good enough.
The (now deleted) answer by #EugeneYokota works by checking whether an unordered set of points can be made into a convex polygon, but that's not what the OP asked for. He asked for a method to check whether a given polygon is convex or not. (A "polygon" in computer science is usually defined [as in the XFillPolygon documentation] as an ordered array of 2D points, with consecutive points joined with a side as well as the last point to the first.) Also, the gift wrapping algorithm in this case would have the time-complexity of O(n^2) for n points - which is much larger than actually needed to solve this problem, while the question asks for an efficient algorithm.
#JasonS's answer, along with the other answers that follow his idea, accepts star polygons such as a pentagram or the one in #zenna's comment, but star polygons are not considered to be convex. As
#plasmacel notes in a comment, this is a good approach to use if you have prior knowledge that the polygon is not self-intersecting, but it can fail if you do not have that knowledge.
#Sekhat's answer is correct but it also has the time-complexity of O(n^2) and thus is inefficient.
#LorenPechtel's added answer after her edit is the best one here but it is vague.
A correct algorithm with optimal complexity
The algorithm I present here has the time-complexity of O(n), correctly tests whether a polygon is convex or not, and passes all the tests I have thrown at it. The idea is to traverse the sides of the polygon, noting the direction of each side and the signed change of direction between consecutive sides. "Signed" here means left-ward is positive and right-ward is negative (or the reverse) and straight-ahead is zero. Those angles are normalized to be between minus-pi (exclusive) and pi (inclusive). Summing all these direction-change angles (a.k.a the deflection angles) together will result in plus-or-minus one turn (i.e. 360 degrees) for a convex polygon, while a star-like polygon (or a self-intersecting loop) will have a different sum ( n * 360 degrees, for n turns overall, for polygons where all the deflection angles are of the same sign). So we must check that the sum of the direction-change angles is plus-or-minus one turn. We also check that the direction-change angles are all positive or all negative and not reverses (pi radians), all points are actual 2D points, and that no consecutive vertices are identical. (That last point is debatable--you may want to allow repeated vertices but I prefer to prohibit them.) The combination of those checks catches all convex and non-convex polygons.
Here is code for Python 3 that implements the algorithm and includes some minor efficiencies. The code looks longer than it really is due to the the comment lines and the bookkeeping involved in avoiding repeated point accesses.
TWO_PI = 2 * pi
def is_convex_polygon(polygon):
"""Return True if the polynomial defined by the sequence of 2D
points is 'strictly convex': points are valid, side lengths non-
zero, interior angles are strictly between zero and a straight
angle, and the polygon does not intersect itself.
NOTES: 1. Algorithm: the signed changes of the direction angles
from one side to the next side must be all positive or
all negative, and their sum must equal plus-or-minus
one full turn (2 pi radians). Also check for too few,
invalid, or repeated points.
2. No check is explicitly done for zero internal angles
(180 degree direction-change angle) as this is covered
in other ways, including the `n < 3` check.
"""
try: # needed for any bad points or direction changes
# Check for too few points
if len(polygon) < 3:
return False
# Get starting information
old_x, old_y = polygon[-2]
new_x, new_y = polygon[-1]
new_direction = atan2(new_y - old_y, new_x - old_x)
angle_sum = 0.0
# Check each point (the side ending there, its angle) and accum. angles
for ndx, newpoint in enumerate(polygon):
# Update point coordinates and side directions, check side length
old_x, old_y, old_direction = new_x, new_y, new_direction
new_x, new_y = newpoint
new_direction = atan2(new_y - old_y, new_x - old_x)
if old_x == new_x and old_y == new_y:
return False # repeated consecutive points
# Calculate & check the normalized direction-change angle
angle = new_direction - old_direction
if angle <= -pi:
angle += TWO_PI # make it in half-open interval (-Pi, Pi]
elif angle > pi:
angle -= TWO_PI
if ndx == 0: # if first time through loop, initialize orientation
if angle == 0.0:
return False
orientation = 1.0 if angle > 0.0 else -1.0
else: # if other time through loop, check orientation is stable
if orientation * angle <= 0.0: # not both pos. or both neg.
return False
# Accumulate the direction-change angle
angle_sum += angle
# Check that the total number of full turns is plus-or-minus 1
return abs(round(angle_sum / TWO_PI)) == 1
except (ArithmeticError, TypeError, ValueError):
return False # any exception means not a proper convex polygon
The following Java function/method is an implementation of the algorithm described in this answer.
public boolean isConvex()
{
if (_vertices.size() < 4)
return true;
boolean sign = false;
int n = _vertices.size();
for(int i = 0; i < n; i++)
{
double dx1 = _vertices.get((i + 2) % n).X - _vertices.get((i + 1) % n).X;
double dy1 = _vertices.get((i + 2) % n).Y - _vertices.get((i + 1) % n).Y;
double dx2 = _vertices.get(i).X - _vertices.get((i + 1) % n).X;
double dy2 = _vertices.get(i).Y - _vertices.get((i + 1) % n).Y;
double zcrossproduct = dx1 * dy2 - dy1 * dx2;
if (i == 0)
sign = zcrossproduct > 0;
else if (sign != (zcrossproduct > 0))
return false;
}
return true;
}
The algorithm is guaranteed to work as long as the vertices are ordered (either clockwise or counter-clockwise), and you don't have self-intersecting edges (i.e. it only works for simple polygons).
Here's a test to check if a polygon is convex.
Consider each set of three points along the polygon--a vertex, the vertex before, the vertex after. If every angle is 180 degrees or less you have a convex polygon. When you figure out each angle, also keep a running total of (180 - angle). For a convex polygon, this will total 360.
This test runs in O(n) time.
Note, also, that in most cases this calculation is something you can do once and save — most of the time you have a set of polygons to work with that don't go changing all the time.
To test if a polygon is convex, every point of the polygon should be level with or behind each line.
Here's an example picture:
The answer by #RoryDaulton
seems the best to me, but what if one of the angles is exactly 0?
Some may want such an edge case to return True, in which case, change "<=" to "<" in the line :
if orientation * angle < 0.0: # not both pos. or both neg.
Here are my test cases which highlight the issue :
# A square
assert is_convex_polygon( ((0,0), (1,0), (1,1), (0,1)) )
# This LOOKS like a square, but it has an extra point on one of the edges.
assert is_convex_polygon( ((0,0), (0.5,0), (1,0), (1,1), (0,1)) )
The 2nd assert fails in the original answer. Should it?
For my use case, I would prefer it didn't.
This method would work on simple polygons (no self intersecting edges) assuming that the vertices are ordered (either clockwise or counter)
For an array of vertices:
vertices = [(0,0),(1,0),(1,1),(0,1)]
The following python implementation checks whether the z component of all the cross products have the same sign
def zCrossProduct(a,b,c):
return (a[0]-b[0])*(b[1]-c[1])-(a[1]-b[1])*(b[0]-c[0])
def isConvex(vertices):
if len(vertices)<4:
return True
signs= [zCrossProduct(a,b,c)>0 for a,b,c in zip(vertices[2:],vertices[1:],vertices)]
return all(signs) or not any(signs)
I implemented both algorithms: the one posted by #UriGoren (with a small improvement - only integer math) and the one from #RoryDaulton, in Java. I had some problems because my polygon is closed, so both algorithms were considering the second as concave, when it was convex. So i changed it to prevent such situation. My methods also uses a base index (which can be or not 0).
These are my test vertices:
// concave
int []x = {0,100,200,200,100,0,0};
int []y = {50,0,50,200,50,200,50};
// convex
int []x = {0,100,200,100,0,0};
int []y = {50,0,50,200,200,50};
And now the algorithms:
private boolean isConvex1(int[] x, int[] y, int base, int n) // Rory Daulton
{
final double TWO_PI = 2 * Math.PI;
// points is 'strictly convex': points are valid, side lengths non-zero, interior angles are strictly between zero and a straight
// angle, and the polygon does not intersect itself.
// NOTES: 1. Algorithm: the signed changes of the direction angles from one side to the next side must be all positive or
// all negative, and their sum must equal plus-or-minus one full turn (2 pi radians). Also check for too few,
// invalid, or repeated points.
// 2. No check is explicitly done for zero internal angles(180 degree direction-change angle) as this is covered
// in other ways, including the `n < 3` check.
// needed for any bad points or direction changes
// Check for too few points
if (n <= 3) return true;
if (x[base] == x[n-1] && y[base] == y[n-1]) // if its a closed polygon, ignore last vertex
n--;
// Get starting information
int old_x = x[n-2], old_y = y[n-2];
int new_x = x[n-1], new_y = y[n-1];
double new_direction = Math.atan2(new_y - old_y, new_x - old_x), old_direction;
double angle_sum = 0.0, orientation=0;
// Check each point (the side ending there, its angle) and accum. angles for ndx, newpoint in enumerate(polygon):
for (int i = 0; i < n; i++)
{
// Update point coordinates and side directions, check side length
old_x = new_x; old_y = new_y; old_direction = new_direction;
int p = base++;
new_x = x[p]; new_y = y[p];
new_direction = Math.atan2(new_y - old_y, new_x - old_x);
if (old_x == new_x && old_y == new_y)
return false; // repeated consecutive points
// Calculate & check the normalized direction-change angle
double angle = new_direction - old_direction;
if (angle <= -Math.PI)
angle += TWO_PI; // make it in half-open interval (-Pi, Pi]
else if (angle > Math.PI)
angle -= TWO_PI;
if (i == 0) // if first time through loop, initialize orientation
{
if (angle == 0.0) return false;
orientation = angle > 0 ? 1 : -1;
}
else // if other time through loop, check orientation is stable
if (orientation * angle <= 0) // not both pos. or both neg.
return false;
// Accumulate the direction-change angle
angle_sum += angle;
// Check that the total number of full turns is plus-or-minus 1
}
return Math.abs(Math.round(angle_sum / TWO_PI)) == 1;
}
And now from Uri Goren
private boolean isConvex2(int[] x, int[] y, int base, int n)
{
if (n < 4)
return true;
boolean sign = false;
if (x[base] == x[n-1] && y[base] == y[n-1]) // if its a closed polygon, ignore last vertex
n--;
for(int p=0; p < n; p++)
{
int i = base++;
int i1 = i+1; if (i1 >= n) i1 = base + i1-n;
int i2 = i+2; if (i2 >= n) i2 = base + i2-n;
int dx1 = x[i1] - x[i];
int dy1 = y[i1] - y[i];
int dx2 = x[i2] - x[i1];
int dy2 = y[i2] - y[i1];
int crossproduct = dx1*dy2 - dy1*dx2;
if (i == base)
sign = crossproduct > 0;
else
if (sign != (crossproduct > 0))
return false;
}
return true;
}
For a non complex (intersecting) polygon to be convex, vector frames obtained from any two connected linearly independent lines a,b must be point-convex otherwise the polygon is concave.
For example the lines a,b are convex to the point p and concave to it below for each case i.e. above: p exists inside a,b and below: p exists outside a,b
Similarly for each polygon below, if each line pair making up a sharp edge is point-convex to the centroid c then the polygon is convex otherwise it’s concave.
blunt edges (wronged green) are to be ignored
N.B
This approach would require you compute the centroid of your polygon beforehand since it doesn’t employ angles but vector algebra/transformations
Adapted Uri's code into matlab. Hope this may help.
Be aware that Uri's algorithm only works for simple polygons! So, be sure to test if the polygon is simple first!
% M [ x1 x2 x3 ...
% y1 y2 y3 ...]
% test if a polygon is convex
function ret = isConvex(M)
N = size(M,2);
if (N<4)
ret = 1;
return;
end
x0 = M(1, 1:end);
x1 = [x0(2:end), x0(1)];
x2 = [x0(3:end), x0(1:2)];
y0 = M(2, 1:end);
y1 = [y0(2:end), y0(1)];
y2 = [y0(3:end), y0(1:2)];
dx1 = x2 - x1;
dy1 = y2 - y1;
dx2 = x0 - x1;
dy2 = y0 - y1;
zcrossproduct = dx1 .* dy2 - dy1 .* dx2;
% equality allows two consecutive edges to be parallel
t1 = sum(zcrossproduct >= 0);
t2 = sum(zcrossproduct <= 0);
ret = t1 == N || t2 == N;
end

Resources