I want to pre-compute some values for each combination in a set of combinations. For example, when choosing 3 numbers from 0 to 12, I'll compute some value for each one:
>>> for n in choose(range(13), 3):
print n, foo(n)
(0, 1, 2) 78
(0, 1, 3) 4
(0, 1, 4) 64
(0, 1, 5) 33
(0, 1, 6) 20
(0, 1, 7) 64
(0, 1, 8) 13
(0, 1, 9) 24
(0, 1, 10) 85
(0, 1, 11) 13
etc...
I want to store these values in an array so that given the combination, I can compute its and get the value. For example:
>>> a = [78, 4, 64, 33]
>>> a[magic((0,1,2))]
78
What would magic be?
Initially I thought to just store it as a 3-d matrix of size 13 x 13 x 13, so I can easily index it that way. While this is fine for 13 choose 3, this would have way too much overhead for something like 13 choose 7.
I don't want to use a dict because eventually this code will be in C, and an array would be much more efficient anyway.
UPDATE: I also have a similar problem, but using combinations with repetitions, so any answers on how to get the rank of those would be much appreciated =).
UPDATE: To make it clear, I'm trying to conserve space. Each of these combinations actually indexes into something take up a lot of space, let's say 2 kilobytes. If I were to use a 13x13x13 array, that would be 4 megabytes, of which I only need 572 kilobytes using (13 choose 3) spots.
Here is a conceptual answer and a code based on how lex ordering works. (So I guess my answer is like that of "moron", except that I think that he has too few details and his links have too many.) I wrote a function unchoose(n,S) for you that works assuming that S is an ordered list subset of range(n). The idea: Either S contains 0 or it does not. If it does, remove 0 and compute the index for the remaining subset. If it does not, then it comes after the binomial(n-1,k-1) subsets that do contain 0.
def binomial(n,k):
if n < 0 or k < 0 or k > n: return 0
b = 1
for i in xrange(k): b = b*(n-i)/(i+1)
return b
def unchoose(n,S):
k = len(S)
if k == 0 or k == n: return 0
j = S[0]
if k == 1: return j
S = [x-1 for x in S]
if not j: return unchoose(n-1,S[1:])
return binomial(n-1,k-1)+unchoose(n-1,S)
def choose(X,k):
n = len(X)
if k < 0 or k > n: return []
if not k: return [[]]
if k == n: return [X]
return [X[:1] + S for S in choose(X[1:],k-1)] + choose(X[1:],k)
(n,k) = (13,3)
for S in choose(range(n),k): print unchoose(n,S),S
Now, it is also true that you can cache or hash values of both functions, binomial and unchoose. And what's nice about this is that you can compromise between precomputing everything and precomputing nothing. For instance you can precompute only for len(S) <= 3.
You can also optimize unchoose so that it adds the binomial coefficients with a loop if S[0] > 0, instead of decrementing and using tail recursion.
You can try using the lexicographic index of the combination. Maybe this page will help: http://saliu.com/bbs/messages/348.html
This MSDN page has more details: Generating the mth Lexicographical Element of a Mathematical Combination.
NOTE: The MSDN page has been retired. If you download the documentation at the above link, you will find the article on page 10201 of the pdf that is downloaded.
To be a bit more specific:
When treated as a tuple, you can order the combinations lexicographically.
So (0,1,2) < (0,1,3) < (0,1,4) etc.
Say you had the number 0 to n-1 and chose k out of those.
Now if the first element is zero, you know that it is one among the first n-1 choose k-1.
If the first element is 1, then it is one among the next n-2 choose k-1.
This way you can recursively compute the exact position of the given combination in the lexicographic ordering and use that to map it to your number.
This works in reverse too and the MSDN page explains how to do that.
Use a hash table to store the results. A decent hash function could be something like:
h(x) = (x1*p^(k - 1) + x2*p^(k - 2) + ... + xk*p^0) % pp
Where x1 ... xk are the numbers in your combination (for example (0, 1, 2) has x1 = 0, x2 = 1, x3 = 2) and p and pp are primes.
So you would store Hash[h(0, 1, 2)] = 78 and then you would retrieve it the same way.
Note: the hash table is just an array of size pp, not a dict.
I would suggest a specialised hash table. The hash for a combination should be the exclusive-or of the hashes for the values. Hashes for values are basically random bit-patterns.
You could code the table to cope with collisions, but it should be fairly easy to derive a minimal perfect hash scheme - one where no two three-item combinations give the same hash value, and where the hash-size and table-size are kept to a minimum.
This is basically Zobrist hashing - think of a "move" as adding or removing one item of the combination.
EDIT
The reason to use a hash table is that the lookup performance O(n) where n is the number of items in the combination (assuming no collisions). Calculating lexicographical indexes into the combinations is significantly slower, IIRC.
The downside is obviously the up-front work done to generate the table.
For now, I've reached a compromise: I have a 13x13x13 array which just maps to the index of the combination, taking up 13x13x13x2 bytes = 4 kilobytes (using short ints), plus the normal-sized (13 choose 3) * 2 kilobytes = 572 kilobytes, for a total of 576 kilobytes. Much better than 4 megabytes, and also faster than a rank calculation!
I did this partly cause I couldn't seem to get Moron's answer to work. Also this is more extensible - I have a case where I need combinations with repetitions, and I haven't found a way to compute the rank of those, yet.
What you want are called combinadics. Here's my implementation of this concept, in Python:
def nthresh(k, idx):
"""Finds the largest value m such that C(m, k) <= idx."""
mk = k
while ncombs(mk, k) <= idx:
mk += 1
return mk - 1
def idx_to_set(k, idx):
ret = []
for i in range(k, 0, -1):
element = nthresh(i, idx)
ret.append(element)
idx -= ncombs(element, i)
return ret
def set_to_idx(input):
ret = 0
for k, ck in enumerate(sorted(input)):
ret += ncombs(ck, k + 1)
return ret
I have written a class to handle common functions for working with the binomial coefficient, which is the type of problem that your problem falls under. It performs the following tasks:
Outputs all the K-indexes in a nice format for any N choose K to a file. The K-indexes can be substituted with more descriptive strings or letters. This method makes solving this type of problem quite trivial.
Converts the K-indexes to the proper index of an entry in the sorted binomial coefficient table. This technique is much faster than older published techniques that rely on iteration and it does not use very much memory. It does this by using a mathematical property inherent in Pascal's Triangle. My paper talks about this. I believe I am the first to discover and publish this technique, but I could be wrong.
Converts the index in a sorted binomial coefficient table to the corresponding K-indexes.
Uses Mark Dominus method to calculate the binomial coefficient, which is much less likely to overflow and works with larger numbers.
The class is written in .NET C# and provides a way to manage the objects related to the problem (if any) by using a generic list. The constructor of this class takes a bool value called InitTable that when true will create a generic list to hold the objects to be managed. If this value is false, then it will not create the table. The table does not need to be created in order to perform the 4 above methods. Accessor methods are provided to access the table.
There is an associated test class which shows how to use the class and its methods. It has been extensively tested with 2 cases and there are no known bugs.
To read about this class and download the code, see Tablizing The Binomial Coeffieicent.
It should not be hard to convert this class to C++.
Related
Is there any efficient algorithm to do so ,I have tried to produce all binary numbers and store them in an array then sort them, if we can directly generate the binary numbers in lexicographical order the code will be much faster.
For eg : n=7 produces 1,10,100,101,11,110,111
The key property here is, 0 will always come before 1, so you can use recursion to solve this. The algorithm would look like:
Start recursion from 1
If current number > n, ignore it
Else, add it to the output list. Call recursion(curr_number + "0") and recursion(curr_number + "1")
This is a simple algorithm, which can be easily implemented in most languages.
Edit: Python implementation:
def dfs(current_string, current_number, n):
if current_number > n:
return []
strings = [current_string]
strings.extend(dfs(current_string + "0", current_number << 1, n))
strings.extend(dfs(current_string + "1", (current_number << 1)+1, n))
return strings
print(dfs("1", 1, 7))
If you number a complete binary tree row by row, from 1 to 2^d-1, the enumeration of the nodes in lexicographical order is the preorder traversal. Now as the two children of a node carry the value of the parent followed by 0 or by 1, we have the recursive enumeration
n= ...
def Emit(m):
print(bin(m))
if 2 * m <= n:
Emit(2 * m)
if 2 * m + 1 <= n:
Emit(2 * m + 1)
Emit(1)
(You can also obtain the binary representations by concatenating 0's or 1's as you go.)
There are a few rules you can follow to generate the next item in a lexicographical ordering of any set of strings:
The first symbol that changes must increase (otherwise you'll get an earlier symbol)
The first symbols that changes must be as far right as possible (otherwise there would be a smaller lexicographical change); and
The symbols after the first change must be made as small as possible (otherwise again there would be a smaller lexicographical change).
For ordering the binary strings, these rules are easy to apply. In each iteration:
If you can append a zero without exceeding n, then do so;
Otherwise, find the rightmost possible 0, change it to a 1, and remove the remainder. The "rightmost possible 0" in this case is rightmost one that produces a result <= n. This is not necessarily the rightmost one if n is not 2x-1.
This iteration is pretty easy to implement with bitwise operators, leading to this nice quick algorithm. To simplify step (2), we assume that n is 2x-1 and just check our outputs:
def printLexTo(n):
val=1
while True:
if val<=n:
print("{0:b}".format(val))
if 2*val <= n:
val *= 2
else:
# get the smallest 0 bit
bit = (val+1) & ~val
# set it to 1 and remove the remainder
val = (val+1)//bit
if val==1:
# there weren't any 0 bits in the string
break
Try it online
As is often the case, this iterative algorithm is a lot faster than recursive ones, but coming up with it requires a deeper understanding of the structure of the solution.
For generating a pseudo-random permutation, the Knuth shuffles can be used. An involution is a self-inverse permutation and I guess, I could adapt the shuffles by forbidding touching an element multiple times. However, I'm not sure whether I could do it efficiently and whether it generates every involution equiprobably.
I'm afraid, an example is needed: On a set {0,1,2}, there are 6 permutation, out of which 4 are involutions. I'm looking for an algorithm generating one of them at random with the same probability.
A correct but very inefficient algorithm would be: Use Knuth shuffle, retry if it's no involution.
Let's here use a(n) as the number of involutions on a set of size n (as OEIS does). For a given set of size n and a given element in that set, the total number of involutions on that set is a(n). That element must either be unchanged by the involution or be swapped with another element. The number of involutions that leave our element fixed is a(n-1), since those are involutions on the other elements. Therefore a uniform distribution on the involutions must have a probability of a(n-1)/a(n) of keeping that element fixed. If it is to be fixed, just leave that element alone. Otherwise, choose another element that has not yet been examined by our algorithm to swap with our element. We have just decided what happens with one or two elements in the set: keep going and decide what happens with one or two elements at a time.
To do this, we need a list of the counts of involutions for each i <= n, but that is easily done with the recursion formula
a(i) = a(i-1) + (i-1) * a(i-2)
(Note that this formula from OEIS also comes from my algorithm: the first term counts the involutions keeping the first element where it is, and the second term is for the elements that are swapped with it.) If you are working with involutions, this is probably important enough to break out into another function, precompute some smaller values, and cache the function's results for greater speed, as in this code:
# Counts of involutions (self-inverse permutations) for each size
_invo_cnts = [1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, 35696, 140152]
def invo_count(n):
"""Return the number of involutions of size n and cache the result."""
for i in range(len(_invo_cnts), n+1):
_invo_cnts.append(_invo_cnts[i-1] + (i-1) * _invo_cnts[i-2])
return _invo_cnts[n]
We also need a way to keep track of the elements that have not yet been decided, so we can efficiently choose one of those elements with uniform probability and/or mark an element as decided. We can keep them in a shrinking list, with a marker to the current end of the list. When we decide an element, we move the current element at the end of the list to replace the decided element then reduce the list. With that efficiency, the complexity of this algorithm is O(n), with one random number calculation for each element except perhaps the last. No better order complexity is possible.
Here is code in Python 3.5.2. The code is somewhat complicated by the indirection involved through the list of undecided elements.
from random import randrange
def randinvolution(n):
"""Return a random (uniform) involution of size n."""
# Set up main variables:
# -- the result so far as a list
involution = list(range(n))
# -- the list of indices of unseen (not yet decided) elements.
# unseen[0:cntunseen] are unseen/undecided elements, in any order.
unseen = list(range(n))
cntunseen = n
# Make an involution, progressing one or two elements at a time
while cntunseen > 1: # if only one element remains, it must be fixed
# Decide whether current element (index cntunseen-1) is fixed
if randrange(invo_count(cntunseen)) < invo_count(cntunseen - 1):
# Leave the current element as fixed and mark it as seen
cntunseen -= 1
else:
# In involution, swap current element with another not yet seen
idxother = randrange(cntunseen - 1)
other = unseen[idxother]
current = unseen[cntunseen - 1]
involution[current], involution[other] = (
involution[other], involution[current])
# Mark both elements as seen by removing from start of unseen[]
unseen[idxother] = unseen[cntunseen - 2]
cntunseen -= 2
return involution
I did several tests. Here is the code I used to check for validity and uniform distribution:
def isinvolution(p):
"""Flag if a permutation is an involution."""
return all(p[p[i]] == i for i in range(len(p)))
# test the validity and uniformness of randinvolution()
n = 4
cnt = 10 ** 6
distr = {}
for j in range(cnt):
inv = tuple(randinvolution(n))
assert isinvolution(inv)
distr[inv] = distr.get(inv, 0) + 1
print('In {} attempts, there were {} random involutions produced,'
' with the distribution...'.format(cnt, len(distr)))
for x in sorted(distr):
print(x, str(distr[x]).rjust(2 + len(str(cnt))))
And the results were
In 1000000 attempts, there were 10 random involutions produced, with the distribution...
(0, 1, 2, 3) 99874
(0, 1, 3, 2) 100239
(0, 2, 1, 3) 100118
(0, 3, 2, 1) 99192
(1, 0, 2, 3) 99919
(1, 0, 3, 2) 100304
(2, 1, 0, 3) 100098
(2, 3, 0, 1) 100211
(3, 1, 2, 0) 100091
(3, 2, 1, 0) 99954
That looks pretty uniform to me, as do other results I checked.
An involution is a one-to-one mapping that is its own inverse. Any cipher is a one-to-one mapping; it has to be in order for a cyphertext to be unambiguously decrypyed.
For an involution you need a cipher that is its own inverse. Such ciphers exist, ROT13 is an example. See Reciprocal Cipher for some others.
For your question I would suggest an XOR cipher. Pick a random key at least as long as the longest piece of data in your initial data set. If you are using 32 bit numbers, then use a 32 bit key. To permute, XOR the key with each piece of data in turn. The reverse permutation (equivalent to decrypting) is exactly the same XOR operation and will get back to the original data.
This will solve the mathematical problem, but it is most definitely not cryptographically secure. Repeatedly using the same key will allow an attacker to discover the key. I assume that there is no security requirement over and above the need for a random-seeming involution with an even distribution.
ETA: This is a demo, in Java, of what I am talking about in my second comment. Being Java, I use indexes 0..12 for your 13 element set.
public static void Demo() {
final int key = 0b1001;
System.out.println("key = " + key);
System.out.println();
for (int i = 0; i < 13; ++i) {
System.out.print(i + " -> ");
int ctext = i ^ key;
while (ctext >= 13) {
System.out.print(ctext + " -> ");
ctext = ctext ^ key;
}
System.out.println(ctext);
}
} // end Demo()
The output from the demo is:
key = 9
0 -> 9
1 -> 8
2 -> 11
3 -> 10
4 -> 13 -> 4
5 -> 12
6 -> 15 -> 6
7 -> 14 -> 7
8 -> 1
9 -> 0
10 -> 3
11 -> 2
12 -> 5
Where a transformed key would fall off the end of the array it is transformed again until it falls within the array. I am not sure if a while construction will fall within the strict mathematical definition of a function.
Consider a set of 13 Danish, 11 Japanese and 8 Polish people. It is well known that the number of different ways of dividing this set of people to groups is the 13+11+8=32:th Bell number (the number of set partitions). However we are asked to find the number of possible set partitions under a given constraint. The question is as follows:
A set partition is said to be good if it has no group consisting of at least two people that only includes a single nationality. How many good partitions there are for this set? (A group may include only one person.)
The brute force approach requires going though about 10^26 partitions and checking which ones are good. This seems pretty unfeasible, especially if the groups are larger or one introduces other nationalities. Is there a smart way instead?
EDIT: As a side note. There probably is no hope for a really nice solution. A highly esteemed expert in combinatorics answered a related question, which, I think, basically says that the related problem, and thus this problem also, is very difficult to solve exactly.
Here's a solution using dynamic programming.
It starts from an empty set, then adds one element at a time and calculates all the valid partitions.
The state space is huge, but notice that to be able to calculate the next step we only need to know about a partition the following things:
For each nationality, how many sets it contains that consists of only a single member of that nationality. (e.g.: {a})
How many sets it contains with mixed elements. (e.g.: {a, b, c})
For each of these configurations I only store the total count. Example:
[0, 1, 2, 2] -> 3
{a}{b}{c}{mixed}
e.g.: 3 partitions that look like: {b}, {c}, {c}, {a,c}, {b,c}
Here's the code in python:
import collections
from operator import mul
from fractions import Fraction
def nCk(n,k):
return int( reduce(mul, (Fraction(n-i, i+1) for i in range(k)), 1) )
def good_partitions(l):
n = len(l)
i = 0
prev = collections.defaultdict(int)
while l:
#any more from this kind?
if l[0] == 0:
l.pop(0)
i += 1
continue
l[0] -= 1
curr = collections.defaultdict(int)
for solution,total in prev.iteritems():
for idx,item in enumerate(solution):
my_solution = list(solution)
if idx == i:
# add element as a new set
my_solution[i] += 1
curr[tuple(my_solution)] += total
elif my_solution[idx]:
if idx != n:
# add to a set consisting of one element
# or merge into multiple sets that consist of one element
cnt = my_solution[idx]
c = cnt
while c > 0:
my_solution = list(solution)
my_solution[n] += 1
my_solution[idx] -= c
curr[tuple(my_solution)] += total * nCk(cnt, c)
c -= 1
else:
# add to a mixed set
cnt = my_solution[idx]
curr[tuple(my_solution)] += total * cnt
if not prev:
# one set with one element
lone = [0] * (n+1)
lone[i] = 1
curr[tuple(lone)] = 1
prev = curr
return sum(prev.values())
print good_partitions([1, 1, 1, 1]) # 15
print good_partitions([1, 1, 1, 1, 1]) # 52
print good_partitions([2, 1]) # 4
print good_partitions([13, 11, 8]) # 29811734589499214658370837
It produces correct values for the test cases. I also tested it against a brute-force solution (for small values), and it produces the same results.
An exact analytic solution is hard, but a polynomial time+space dynamic programming solution is straightforward.
First of all, we need an absolute order on the size of groups. We do that by comparing how many Danes, Japanese, and Poles we have.
Next, the function to write is this one.
m is the maximum group size we can emit
p is the number of people of each nationality that we have left to split
max_good_partitions_of_maximum_size(m, p) is the number of "good partitions"
we can form from p people, with no group being larger than m
Clearly you can write this as a somewhat complicated recursive function that always select the next partition to use, then call itself with that as the new maximum size, and subtract the partition from p. If you had this function, then your answer is simply max_good_partitions_of_maximum_size(p, p) with p = [13, 11, 8]. But that is going to be a brute force search that won't run in reasonable time.
Finally apply https://en.wikipedia.org/wiki/Memoization by caching every call to this function, and it will run in polynomial time. However you will also have to cache a polynomial number of calls to it.
UPDATE:
Combinatorics and unranking was eventually what I needed.
The links below helped alot:
http://msdn.microsoft.com/en-us/library/aa289166(v=vs.71).aspx
http://www.codeproject.com/Articles/21335/Combinations-in-C-Part-2
The Problem
Given a list of N symbols say {0,1,2,3,4...}
And NCr combinations of these
eg. NC3 will generate:
0 1 2
0 1 3
0 1 4
...
...
1 2 3
1 2 4
etc...
For the ith combination (i = [1 .. NCr]) I want to determine Whether a symbol (s) is part of it.
Func(N, r, i, s) = True/False or 0/1
eg. Continuing from above
The 1st combination contains 0 1 2 but not 3
F(N,3,1,"0") = TRUE
F(N,3,1,"1") = TRUE
F(N,3,1,"2") = TRUE
F(N,3,1,"3") = FALSE
Current approaches and tibits that might help or be related.
Relation to matrices
For r = 2 eg. 4C2 the combinations are the upper (or lower) half of a 2D matrix
1,2 1,3 1,4
----2,3 2,4
--------3,4
For r = 3 its the corner of a 3D matrix or cube
for r = 4 Its the "corner" of a 4D matrix and so on.
Another relation
Ideally the solution would be of a form something like the answer to this:
Calculate Combination based on position
The nth combination in the list of combinations of length r (with repitition allowed), the ith symbol can be calculated
Using integer division and remainder:
n/r^i % r = (0 for 0th symbol, 1 for 1st symbol....etc)
eg for the 6th comb of 3 symbols the 0th 1st and 2nd symbols are:
i = 0 => 6 / 3^0 % 3 = 0
i = 1 => 6 / 3^1 % 3 = 2
i = 2 => 6 / 3^2 % 3 = 0
The 6th comb would then be 0 2 0
I need something similar but with repition not allowed.
Thank you for following this question this far :]
Kevin.
I believe your problem is that of unranking combinations or subsets.
I will give you an implementation in Mathematica, from the package Combinatorica, but the Google link above is probably a better place to start, unless you are familiar with the semantics.
UnrankKSubset::usage = "UnrankKSubset[m, k, l] gives the mth k-subset of set l, listed in lexicographic order."
UnrankKSubset[m_Integer, 1, s_List] := {s[[m + 1]]}
UnrankKSubset[0, k_Integer, s_List] := Take[s, k]
UnrankKSubset[m_Integer, k_Integer, s_List] :=
Block[{i = 1, n = Length[s], x1, u, $RecursionLimit = Infinity},
u = Binomial[n, k];
While[Binomial[i, k] < u - m, i++];
x1 = n - (i - 1);
Prepend[UnrankKSubset[m - u + Binomial[i, k], k-1, Drop[s, x1]], s[[x1]]]
]
Usage is like:
UnrankKSubset[5, 3, {0, 1, 2, 3, 4}]
{0, 3, 4}
Yielding the 6th (indexing from 0) length-3 combination of set {0, 1, 2, 3, 4}.
There's a very efficient algorithm for this problem, which is also contained in the recently published:Knuth, The Art of Computer Programming, Volume 4A (section 7.2.1.3).
Since you don't care about the order in which the combinations are generated, let's use the lexicographic order of the combinations where each combination is listed in descending order. Thus for r=3, the first 11 combinations of 3 symbols would be: 210, 310, 320, 321, 410, 420, 421, 430, 431, 432, 510. The advantage of this ordering is that the enumeration is independent of n; indeed it is an enumeration over all combinations of 3 symbols from {0, 1, 2, …}.
There is a standard method to directly generate the ith combination given i, so to test whether a symbol s is part of the ith combination, you can simply generate it and check.
Method
How many combinations of r symbols start with a particular symbol s? Well, the remaining r-1 positions must come from the s symbols 0, 1, 2, …, s-1, so it's (s choose r-1), where (s choose r-1) or C(s,r-1) is the binomial coefficient denoting the number of ways of choosing r-1 objects from s objects. As this is true for all s, the first symbol of the ith combination is the smallest s such that
∑k=0s(k choose r-1) ≥ i.
Once you know the first symbol, the problem reduces to finding the (i - ∑k=0s-1(k choose r-1))-th combination of r-1 symbols, where we've subtracted those combinations that start with a symbol less than s.
Code
Python code (you can write C(n,r) more efficiently, but this is fast enough for us):
#!/usr/bin/env python
tC = {}
def C(n,r):
if tC.has_key((n,r)): return tC[(n,r)]
if r>n-r: r=n-r
if r<0: return 0
if r==0: return 1
tC[(n,r)] = C(n-1,r) + C(n-1,r-1)
return tC[(n,r)]
def combination(r, k):
'''Finds the kth combination of r letters.'''
if r==0: return []
sum = 0
s = 0
while True:
if sum + C(s,r-1) < k:
sum += C(s,r-1)
s += 1
else:
return [s] + combination(r-1, k-sum)
def Func(N, r, i, s): return s in combination(r, i)
for i in range(1, 20): print combination(3, i)
print combination(500, 10000000000000000000000000000000000000000000000000000000000000000)
Note how fast this is: it finds the 10000000000000000000000000000000000000000000000000000000000000000th combination of 500 letters (it starts with 542) in less than 0.5 seconds.
I have written a class to handle common functions for working with the binomial coefficient, which is the type of problem that your problem falls under. It performs the following tasks:
Outputs all the K-indexes in a nice format for any N choose K to a file. The K-indexes can be substituted with more descriptive strings or letters. This method makes solving this type of problem quite trivial.
Converts the K-indexes to the proper index of an entry in the sorted binomial coefficient table. This technique is much faster than older published techniques that rely on iteration. It does this by using a mathematical property inherent in Pascal's Triangle. My paper talks about this. I believe I am the first to discover and publish this technique, but I could be wrong.
Converts the index in a sorted binomial coefficient table to the corresponding K-indexes.
Uses Mark Dominus method to calculate the binomial coefficient, which is much less likely to overflow and works with larger numbers.
The class is written in .NET C# and provides a way to manage the objects related to the problem (if any) by using a generic list. The constructor of this class takes a bool value called InitTable that when true will create a generic list to hold the objects to be managed. If this value is false, then it will not create the table. The table does not need to be created in order to perform the 4 above methods. Accessor methods are provided to access the table.
There is an associated test class which shows how to use the class and its methods. It has been extensively tested with 2 cases and there are no known bugs.
To read about this class and download the code, see Tablizing The Binomial Coeffieicent.
This class can easily be applied to your problem. If you have the rank (or index) to the binomial coefficient table, then simply call the class method that returns the K-indexes in an array. Then, loop through that returned array to see if any of the K-index values match the value you have. Pretty straight forward...
I'm trying to make a hash function so I can tell if too lists with same sizes contain the same elements.
For exemple this is what I want:
f((1 2 3))=f((1 3 2))=f((2 1 3))=f((2 3 1))=f((3 1 2))=f((3 2 1)).
Any ideea how can I approch this problem ? I've tried doing the sum of squares of all elements but it turned out that there are collisions,for exemple f((2 2 5))=33=f((1 4 4)) which is wrong as the lists are not the same.
I'm looking for a simple approach if there is any.
Sort the list and then:
list.each do |current_element|
hash = (37 * hash + current_element) % MAX_HASH_VALUE
end
You're probably out of luck if you really want no collisions. There are N choose k sets of size k with elements in 1..N (and worse, if you allow repeats). So imagine you have N=256, k=8, then N choose k is ~4 x 10^14. You'd need a very large integer to distinctly hash all of these sets.
Possibly you have N, k such that you could still make this work. Good luck.
If you allow occasional collisions, you have lots of options. From simple things like your suggestion (add squares of elements) and computing xor the elements, to complicated things like sort them, print them to a string, and compute MD5 on them. But since collisions are still possible, you have to verify any hash match by comparing the original lists (if you keep them sorted, this is easy).
So you are looking something provides these properties,
1. If h(x1) == y1, then there is an inverse function h_inverse(y1) == x1
2. Because the inverse function exists, there cannot be a value x2 such that x1 != x2, and h(x2) == y1.
Knuth's Multiplicative Method
In Knuth's "The Art of Computer Programming", section 6.4, a multiplicative hashing scheme is introduced as a way to write hash function. The key is multiplied by the golden ratio of 2^32 (2654435761) to produce a hash result.
hash(i)=i*2654435761 mod 2^32
Since 2654435761 and 2^32 has no common factors in common, the multiplication produces a complete mapping of the key to hash result with no overlap. This method works pretty well if the keys have small values. Bad hash results are produced if the keys vary in the upper bits. As is true in all multiplications, variations of upper digits do not influence the lower digits of the multiplication result.
Robert Jenkins' 96 bit Mix Function
Robert Jenkins has developed a hash function based on a sequence of subtraction, exclusive-or, and bit shift.
All the sources in this article are written as Java methods, where the operator '>>>' represents the concept of unsigned right shift. If the source were to be translated to C, then the Java 'int' data type should be replaced with C 'uint32_t' data type, and the Java 'long' data type should be replaced with C 'uint64_t' data type.
The following source is the mixing part of the hash function.
int mix(int a, int b, int c)
{
a=a-b; a=a-c; a=a^(c >>> 13);
b=b-c; b=b-a; b=b^(a << 8);
c=c-a; c=c-b; c=c^(b >>> 13);
a=a-b; a=a-c; a=a^(c >>> 12);
b=b-c; b=b-a; b=b^(a << 16);
c=c-a; c=c-b; c=c^(b >>> 5);
a=a-b; a=a-c; a=a^(c >>> 3);
b=b-c; b=b-a; b=b^(a << 10);
c=c-a; c=c-b; c=c^(b >>> 15);
return c;
}
You can read details from here
If all the elements are numbers and they have a maximum, this is not too complicated, you sort those elements and then you put them together one after the other in the base of your maximum+1.
Hard to describe in words...
For example, if your maximum is 9 (that makes it easy to understand), you'd have :
f(2 3 9 8) = f(3 8 9 2) = 2389
If you maximum was 99, you'd have :
f(16 2 76 8) = (0)2081676
In your example with 2,2 and 5, if you know you would never get anything higher than 5, you could "compose" the result in base 6, so that would be :
f(2 2 5) = 2*6^2 + 2*6 + 5 = 89
f(1 4 4) = 1*6^2 + 4*6 + 4 = 64
Combining hash values is hard, I've found this way (no explanation, though perhaps someone would recognize it) within Boost:
template <class T>
void hash_combine(size_t& seed, T const& v)
{
seed ^= hash_value(v) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
}
It should be fast since there is only shifting, additions and xor taking place (apart from the actual hashing).
However the requirement than the order of the list does not influence the end-result would mean that you first have to sort it which is an O(N log N) operation, so it may not fit.
Also, since it's impossible without more stringent boundaries to provide a collision free hash function, you'll still have to actually compare the sorted lists if ever the hash are equals...
I'm trying to make a hash function so I can tell if two lists with same sizes contain the same elements.
[...] but it turned out that there are collisions
These two sentences suggest you are using the wrong tool for the job. The point of a hash (unless it is a 'perfect hash', which doesn't seem appropriate to this problem) is not to guarantee equality, or to provide a unique output for every given input. In the general usual case, it cannot, because there are more potential inputs than potential outputs.
Whatever hash function you choose, your hashing system is always going to have to deal with the possibility of collisions. And while different hashes imply inequality, it does not follow that equal hashes imply equality.
As regards your actual problem: a start might be to sort the list in ascending order, then use the sorted values as if they were the prime powers in the prime decomposition of an integer. Reconstruct this integer (modulo the maximum hash value) and there is a hash value.
For example:
2 1 3
sorted becomes
1 2 3
Treating this as prime powers gives
2^1.3^2.5^3
which construct
2.9.125 = 2250
giving 2250 as your hash value, which will be the same hash value as for any other ordering of 1 2 3, and also different from the hash value for any other sequence of three numbers that do not overflow the maximum hash value when computed.
A naïve approach to solving your essential problem (comparing lists in an order-insensitive manner) is to convert all lists being compared to a set (set in Python or HashSet in Java). This is more effective than making a hash function since a perfect hash seems essential to your problem. For almost any other approach collisions are inevitable depending on input.