Number of partitions with a given constraint - algorithm

Consider a set of 13 Danish, 11 Japanese and 8 Polish people. It is well known that the number of different ways of dividing this set of people to groups is the 13+11+8=32:th Bell number (the number of set partitions). However we are asked to find the number of possible set partitions under a given constraint. The question is as follows:
A set partition is said to be good if it has no group consisting of at least two people that only includes a single nationality. How many good partitions there are for this set? (A group may include only one person.)
The brute force approach requires going though about 10^26 partitions and checking which ones are good. This seems pretty unfeasible, especially if the groups are larger or one introduces other nationalities. Is there a smart way instead?
EDIT: As a side note. There probably is no hope for a really nice solution. A highly esteemed expert in combinatorics answered a related question, which, I think, basically says that the related problem, and thus this problem also, is very difficult to solve exactly.

Here's a solution using dynamic programming.
It starts from an empty set, then adds one element at a time and calculates all the valid partitions.
The state space is huge, but notice that to be able to calculate the next step we only need to know about a partition the following things:
For each nationality, how many sets it contains that consists of only a single member of that nationality. (e.g.: {a})
How many sets it contains with mixed elements. (e.g.: {a, b, c})
For each of these configurations I only store the total count. Example:
[0, 1, 2, 2] -> 3
{a}{b}{c}{mixed}
e.g.: 3 partitions that look like: {b}, {c}, {c}, {a,c}, {b,c}
Here's the code in python:
import collections
from operator import mul
from fractions import Fraction
def nCk(n,k):
return int( reduce(mul, (Fraction(n-i, i+1) for i in range(k)), 1) )
def good_partitions(l):
n = len(l)
i = 0
prev = collections.defaultdict(int)
while l:
#any more from this kind?
if l[0] == 0:
l.pop(0)
i += 1
continue
l[0] -= 1
curr = collections.defaultdict(int)
for solution,total in prev.iteritems():
for idx,item in enumerate(solution):
my_solution = list(solution)
if idx == i:
# add element as a new set
my_solution[i] += 1
curr[tuple(my_solution)] += total
elif my_solution[idx]:
if idx != n:
# add to a set consisting of one element
# or merge into multiple sets that consist of one element
cnt = my_solution[idx]
c = cnt
while c > 0:
my_solution = list(solution)
my_solution[n] += 1
my_solution[idx] -= c
curr[tuple(my_solution)] += total * nCk(cnt, c)
c -= 1
else:
# add to a mixed set
cnt = my_solution[idx]
curr[tuple(my_solution)] += total * cnt
if not prev:
# one set with one element
lone = [0] * (n+1)
lone[i] = 1
curr[tuple(lone)] = 1
prev = curr
return sum(prev.values())
print good_partitions([1, 1, 1, 1]) # 15
print good_partitions([1, 1, 1, 1, 1]) # 52
print good_partitions([2, 1]) # 4
print good_partitions([13, 11, 8]) # 29811734589499214658370837
It produces correct values for the test cases. I also tested it against a brute-force solution (for small values), and it produces the same results.

An exact analytic solution is hard, but a polynomial time+space dynamic programming solution is straightforward.
First of all, we need an absolute order on the size of groups. We do that by comparing how many Danes, Japanese, and Poles we have.
Next, the function to write is this one.
m is the maximum group size we can emit
p is the number of people of each nationality that we have left to split
max_good_partitions_of_maximum_size(m, p) is the number of "good partitions"
we can form from p people, with no group being larger than m
Clearly you can write this as a somewhat complicated recursive function that always select the next partition to use, then call itself with that as the new maximum size, and subtract the partition from p. If you had this function, then your answer is simply max_good_partitions_of_maximum_size(p, p) with p = [13, 11, 8]. But that is going to be a brute force search that won't run in reasonable time.
Finally apply https://en.wikipedia.org/wiki/Memoization by caching every call to this function, and it will run in polynomial time. However you will also have to cache a polynomial number of calls to it.

Related

Conditional sampling of binary vectors (?)

I'm trying to find a name for my problem, so I don't have to re-invent wheel when coding an algorithm which solves it...
I have say 2,000 binary (row) vectors and I need to pick 500 from them. In the picked sample I do column sums and I want my sample to be as close as possible to a pre-defined distribution of the column sums. I'll be working with 20 to 60 columns.
A tiny example:
Out of the vectors:
110
010
011
110
100
I need to pick 2 to get column sums 2, 1, 0. The solution (exact in this case) would be
110
100
My ideas so far
one could maybe call this a binary multidimensional knapsack, but I did not find any algos for that
Linear Programming could help, but I'd need some step by step explanation as I got no experience with it
as exact solution is not always feasible, something like simulated annealing brute force could work well
a hacky way using constraint solvers comes to mind - first set the constraints tight and gradually loosen them until some solution is found - given that CSP should be much faster than ILP...?
My concrete, practical (if the approximation guarantee works out for you) suggestion would be to apply the maximum entropy method (in Chapter 7 of Boyd and Vandenberghe's book Convex Optimization; you can probably find several implementations with your favorite search engine) to find the maximum entropy probability distribution on row indexes such that (1) no row index is more likely than 1/500 (2) the expected value of the row vector chosen is 1/500th of the predefined distribution. Given this distribution, choose each row independently with probability 500 times its distribution likelihood, which will give you 500 rows on average. If you need exactly 500, repeat until you get exactly 500 (shouldn't take too many tries due to concentration bounds).
Firstly I will make some assumptions regarding this problem:
Regardless whether the column sum of the selected solution is over or under the target, it weighs the same.
The sum of the first, second, and third column are equally weighted in the solution (i.e. If there's a solution whereas the first column sum is off by 1, and another where the third column sum is off by 1, the solution are equally good).
The closest problem I can think of this problem is the Subset sum problem, which itself can be thought of a special case of Knapsack problem.
However both of these problem are NP-Complete. This means there are no polynomial time algorithm that can solve them, even though it is easy to verify the solution.
If I were you the two most arguably efficient solution of this problem are linear programming and machine learning.
Depending on how many columns you are optimising in this problem, with linear programming you can control how much finely tuned you want the solution, in exchange of time. You should read up on this, because this is fairly simple and efficient.
With Machine learning, you need a lot of data sets (the set of vectors and the set of solutions). You don't even need to specify what you want, a lot of machine learning algorithms can generally deduce what you want them to optimise based on your data set.
Both solution has pros and cons, you should decide which one to use yourself based on the circumstances and problem set.
This definitely can be modeled as (integer!) linear program (many problems can). Once you have it, you can use a program such as lpsolve to solve it.
We model vector i is selected as x_i which can be 0 or 1.
Then for each column c, we have a constraint:
sum of all (x_i * value of i in column c) = target for column c
Taking your example, in lp_solve this could look like:
min: ;
+x1 +x4 +x5 >= 2;
+x1 +x4 +x5 <= 2;
+x1 +x2 +x3 +x4 <= 1;
+x1 +x2 +x3 +x4 >= 1;
+x3 <= 0;
+x3 >= 0;
bin x1, x2, x3, x4, x5;
If you are fine with a heuristic based search approach, here is one.
Go over the list and find the minimum squared sum of the digit wise difference between each bit string and the goal. For example, if we are looking for 2, 1, 0, and we are scoring 0, 1, 0, we would do it in the following way:
Take the digit wise difference:
2, 0, 1
Square the digit wise difference:
4, 0, 1
Sum:
5
As a side note, squaring the difference when scoring is a common method when doing heuristic search. In your case, it makes sense because bit strings that have a 1 in as the first digit are a lot more interesting to us. In your case this simple algorithm would pick first 110, then 100, which would is the best solution.
In any case, there are some optimizations that could be made to this, I will post them here if this kind of approach is what you are looking for, but this is the core of the algorithm.
You have a given target binary vector. You want to select M vectors out of N that have the closest sum to the target. Let's say you use the eucilidean distance to measure if a selection is better than another.
If you want an exact sum, have a look at the k-sum problem which is a generalization of the 3SUM problem. The problem is harder than the subset sum problem, because you want an exact number of elements to add to a target value. There is a solution in O(N^(M/2)). lg N), but that means more than 2000^250 * 7.6 > 10^826 operations in your case (in the favorable case where vectors operations have a cost of 1).
First conclusion: do not try to get an exact result unless your vectors have some characteristics that may reduce the complexity.
Here's a hill climbing approach:
sort the vectors by number of 1's: 111... first, 000... last;
use the polynomial time approximate algorithm for the subset sum;
you have an approximate solution with K elements. Because of the order of elements (the big ones come first), K should be a little as possible:
if K >= M, you take the M first vectors of the solution and that's probably near the best you can do.
if K < M, you can remove the first vector and try to replace it with 2 or more vectors from the rest of the N vectors, using the same technique, until you have M vectors. To sumarize: split the big vectors into smaller ones until you reach the correct number of vectors.
Here's a proof of concept with numbers, in Python:
import random
def distance(x, y):
return abs(x-y)
def show(ls):
if len(ls) < 10:
return str(ls)
else:
return ", ".join(map(str, ls[:5]+("...",)+ls[-5:]))
def find(is_xs, target):
# see https://en.wikipedia.org/wiki/Subset_sum_problem#Pseudo-polynomial_time_dynamic_programming_solution
S = [(0, ())] # we store indices along with values to get the path
for i, x in is_xs:
T = [(x + t, js + (i,)) for t, js in S]
U = sorted(S + T)
y, ks = U[0]
S = [(y, ks)]
for z, ls in U:
if z == target: # use the euclidean distance here if you want an approximation
return ls
if z != y and z < target:
y, ks = z, ls
S.append((z, ls))
ls = S[-1][1] # take the closest element to target
return ls
N = 2000
M = 500
target = 1000
xs = [random.randint(0, 10) for _ in range(N)]
print ("Take {} numbers out of {} to make a sum of {}", M, xs, target)
xs = sorted(xs, reverse = True)
is_xs = list(enumerate(xs))
print ("Sorted numbers: {}".format(show(tuple(is_xs))))
ls = find(is_xs, target)
print("FIRST TRY: {} elements ({}) -> {}".format(len(ls), show(ls), sum(x for i, x in is_xs if i in ls)))
splits = 0
while len(ls) < M:
first_x = xs[ls[0]]
js_ys = [(i, x) for i, x in is_xs if i not in ls and x != first_x]
replace = find(js_ys, first_x)
splits += 1
if len(replace) < 2 or len(replace) + len(ls) - 1 > M or sum(xs[i] for i in replace) != first_x:
print("Give up: can't replace {}.\nAdd the lowest elements.")
ls += tuple([i for i, x in is_xs if i not in ls][len(ls)-M:])
break
print ("Replace {} (={}) by {} (={})".format(ls[:1], first_x, replace, sum(xs[i] for i in replace)))
ls = tuple(sorted(ls[1:] + replace)) # use a heap?
print("{} elements ({}) -> {}".format(len(ls), show(ls), sum(x for i, x in is_xs if i in ls)))
print("AFTER {} splits, {} -> {}".format(splits, ls, sum(x for i, x in is_xs if i in ls)))
The result is obviously not guaranteed to be optimal.
Remarks:
Complexity: find has a polynomial time complexity (see the Wikipedia page) and is called at most M^2 times, hence the complexity remains polynomial. In practice, the process is reasonably fast (split calls have a small target).
Vectors: to ensure that you reach the target with the minimum of elements, you can improve the order of element. Your target is (t_1, ..., t_c): if you sort the t_js from max to min, you get the more importants columns first. You can sort the vectors: by number of 1s and then by the presence of a 1 in the most important columns. E.g. target = 4 8 6 => 1 1 1 > 0 1 1 > 1 1 0 > 1 0 1 > 0 1 0 > 0 0 1 > 1 0 0 > 0 0 0.
find (Vectors) if the current sum exceed the target in all the columns, then you're not connecting to the target (any vector you add to the current sum will bring you farther from the target): don't add the sum to S (z >= target case for numbers).
I propose a simple ad hoc algorithm, which, broadly speaking, is a kind of gradient descent algorithm. It seems to work relatively well for input vectors which have a distribution of 1s “similar” to the target sum vector, and probably also for all “nice” input vectors, as defined in a comment of yours. The solution is not exact, but the approximation seems good.
The distance between the sum vector of the output vectors and the target vector is taken to be Euclidean. To minimize it means minimizing the sum of the square differences off sum vector and target vector (the square root is not needed because it is monotonic). The algorithm does not guarantee to yield the sample that minimizes the distance from the target, but anyway makes a serious attempt at doing so, by always moving in some locally optimal direction.
The algorithm can be split into 3 parts.
First of all the first M candidate output vectors out of the N input vectors (e.g., N=2000, M=500) are put in a list, and the remaining vectors are put in another.
Then "approximately optimal" swaps between vectors in the two lists are done, until either the distance would not decrease any more, or a predefined maximum number of iterations is reached. An approximately optimal swap is one where removing the first vector from the list of output vectors causes a maximal decrease or minimal increase of the distance, and then, after the removal of the first vector, adding the second vector to the same list causes a maximal decrease of the distance. The whole swap is avoided if the net result is not a decrease of the distance.
Then, as a last phase, "optimal" swaps are done, again stopping on no decrease in distance or maximum number of iterations reached. Optimal swaps cause a maximal decrease of the distance, without requiring the removal of the first vector to be optimal in itself. To find an optimal swap all vector pairs have to be checked. This phase is much more expensive, being O(M(N-M)), while the previous "approximate" phase is O(M+(N-M))=O(N). Luckily, when entering this phase, most of the work has already been done by the previous phase.
from typing import List, Tuple
def get_sample(vects: List[Tuple[int]], target: Tuple[int], n_out: int,
max_approx_swaps: int = None, max_optimal_swaps: int = None,
verbose: bool = False) -> List[Tuple[int]]:
"""
Get a sample of the input vectors having a sum close to the target vector.
Closeness is measured in Euclidean metrics. The output is not guaranteed to be
optimal (minimum square distance from target), but a serious attempt is made.
The max_* parameters can be used to avoid too long execution times,
tune them to your needs by setting verbose to True, or leave them None (∞).
:param vects: the list of vectors (tuples) with the same number of "columns"
:param target: the target vector, with the same number of "columns"
:param n_out: the requested sample size
:param max_approx_swaps: the max number of approximately optimal vector swaps,
None means unlimited (default: None)
:param max_optimal_swaps: the max number of optimal vector swaps,
None means unlimited (default: None)
:param verbose: print some info if True (default: False)
:return: the sample of n_out vectors having a sum close to the target vector
"""
def square_distance(v1, v2):
return sum((e1 - e2) ** 2 for e1, e2 in zip(v1, v2))
n_vec = len(vects)
assert n_vec > 0
assert n_out > 0
n_rem = n_vec - n_out
assert n_rem > 0
output = vects[:n_out]
remain = vects[n_out:]
n_col = len(vects[0])
assert n_col == len(target) > 0
sumvect = (0,) * n_col
for outvect in output:
sumvect = tuple(map(int.__add__, sumvect, outvect))
sqdist = square_distance(sumvect, target)
if verbose:
print(f"sqdist = {sqdist:4} after"
f" picking the first {n_out} vectors out of {n_vec}")
if max_approx_swaps is None:
max_approx_swaps = sqdist
n_approx_swaps = 0
while sqdist and n_approx_swaps < max_approx_swaps:
# find the best vect to subtract (the square distance MAY increase)
sqdist_0 = None
index_0 = None
sumvect_0 = None
for index in range(n_out):
tmp_sumvect = tuple(map(int.__sub__, sumvect, output[index]))
tmp_sqdist = square_distance(tmp_sumvect, target)
if sqdist_0 is None or sqdist_0 > tmp_sqdist:
sqdist_0 = tmp_sqdist
index_0 = index
sumvect_0 = tmp_sumvect
# find the best vect to add,
# but only if there is a net decrease of the square distance
sqdist_1 = sqdist
index_1 = None
sumvect_1 = None
for index in range(n_rem):
tmp_sumvect = tuple(map(int.__add__, sumvect_0, remain[index]))
tmp_sqdist = square_distance(tmp_sumvect, target)
if sqdist_1 > tmp_sqdist:
sqdist_1 = tmp_sqdist
index_1 = index
sumvect_1 = tmp_sumvect
if sumvect_1:
tmp = output[index_0]
output[index_0] = remain[index_1]
remain[index_1] = tmp
sqdist = sqdist_1
sumvect = sumvect_1
n_approx_swaps += 1
else:
break
if verbose:
print(f"sqdist = {sqdist:4} after {n_approx_swaps}"
f" approximately optimal swap{'s'[n_approx_swaps == 1:]}")
diffvect = tuple(map(int.__sub__, sumvect, target))
if max_optimal_swaps is None:
max_optimal_swaps = sqdist
n_optimal_swaps = 0
while sqdist and n_optimal_swaps < max_optimal_swaps:
# find the best pair to swap,
# but only if the square distance decreases
best_sqdist = sqdist
best_diffvect = diffvect
best_pair = None
for i0 in range(M):
tmp_diffvect = tuple(map(int.__sub__, diffvect, output[i0]))
for i1 in range(n_rem):
new_diffvect = tuple(map(int.__add__, tmp_diffvect, remain[i1]))
new_sqdist = sum(d * d for d in new_diffvect)
if best_sqdist > new_sqdist:
best_sqdist = new_sqdist
best_diffvect = new_diffvect
best_pair = (i0, i1)
if best_pair:
tmp = output[best_pair[0]]
output[best_pair[0]] = remain[best_pair[1]]
remain[best_pair[1]] = tmp
sqdist = best_sqdist
diffvect = best_diffvect
n_optimal_swaps += 1
else:
break
if verbose:
print(f"sqdist = {sqdist:4} after {n_optimal_swaps}"
f" optimal swap{'s'[n_optimal_swaps == 1:]}")
return output
from random import randrange
C = 30 # number of columns
N = 2000 # total number of vectors
M = 500 # number of output vectors
F = 0.9 # fill factor of the target sum vector
T = int(M * F) # maximum value + 1 that can be appear in the target sum vector
A = 10000 # maximum number of approximately optimal swaps, may be None (∞)
B = 10 # maximum number of optimal swaps, may be None (unlimited)
target = tuple(randrange(T) for _ in range(C))
vects = [tuple(int(randrange(M) < t) for t in target) for _ in range(N)]
sample = get_sample(vects, target, M, A, B, True)
Typical output:
sqdist = 2639 after picking the first 500 vectors out of 2000
sqdist = 9 after 27 approximately optimal swaps
sqdist = 1 after 4 optimal swaps
P.S.: As it stands, this algorithm is not limited to binary input vectors, integer vectors would work too. Intuitively I suspect that the quality of the optimization could suffer, though. I suspect that this algorithm is more appropriate for binary vectors.
P.P.S.: Execution times with your kind of data are probably acceptable with standard CPython, but get better (like a couple of seconds, almost a factor of 10) with PyPy. To handle bigger sets of data, the algorithm would have to be translated to C or some other language, which should not be difficult at all.

Best way to distribute a given resource (eg. budget) for optimal output

I am trying to find a solution in which a given resource (eg. budget) will be best distributed to different options which yields different results on the resource provided.
Let's say I have N = 1200 and some functions. (a, b, c, d are some unknown variables)
f1(x) = a * x
f2(x) = b * x^c
f3(x) = a*x + b*x^2 + c*x^3
f4(x) = d^x
f5(x) = log x^d
...
And also, let's say there n number of these functions that yield different results based on its input x, where x = 0 or x >= m, where m is a constant.
Although I am not able to find exact formula for the given functions, I am able to find the output. This means that I can do:
X = f1(N1) + f2(N2) + f3(N3) + ... + fn(Nn) where (N1 + ... Nn) = N as many times as there are ways of distributing N into n numbers, and find a specific case where X is the greatest.
How would I actually go about finding the best distribution of N with the least computation power, using whatever libraries currently available?
If you are happy with allocations constrained to be whole numbers then there is a dynamic programming solution of cost O(Nn) - so you can increase accuracy by scaling if you want, but this will increase cpu time.
For each i=1 to n maintain an array where element j gives the maximum yield using only the first i functions giving them a total allowance of j.
For i=1 this is simply the result of f1().
For i=k+1 consider when working out the result for j consider each possible way of splitting j units between f_{k+1}() and the table that tells you the best return from a distribution among the first k functions - so you can calculate the table for i=k+1 using the table created for k.
At the end you get the best possible return for n functions and N resources. It makes it easier to find out what that best answer is if you maintain of a set of arrays telling the best way to distribute k units among the first i functions, for all possible values of i and k. Then you can look up the best allocation for f100(), subtract off the value this allocated to f100() from N, look up the best allocation for f99() given the resulting resources, and carry on like this until you have worked out the best allocations for all f().
As an example suppose f1(x) = 2x, f2(x) = x^2 and f3(x) = 3 if x>0 and 0 otherwise. Suppose we have 3 units of resource.
The first table is just f1(x) which is 0, 2, 4, 6 for 0,1,2,3 units.
The second table is the best you can do using f1(x) and f2(x) for 0,1,2,3 units and is 0, 2, 4, 9, switching from f1 to f2 at x=2.
The third table is 0, 3, 5, 9. I can get 3 and 5 by using 1 unit for f3() and the rest for the best solution in the second table. 9 is simply the best solution in the second table - there is no better solution using 3 resources that gives any of them to f(3)
So 9 is the best answer here. One way to work out how to get there is to keep the tables around and recalculate that answer. 9 comes from f3(0) + 9 from the second table so all 3 units are available to f2() + f1(). The second table 9 comes from f2(3) so there are no units left for f(1) and we get f1(0) + f2(3) + f3(0).
When you are working the resources to use at stage i=k+1 you have a table form i=k that tells you exactly the result to expect from the resources you have left over after you have decided to use some at stage i=k+1. The best distribution does not become incorrect because that stage i=k you have worked out the result for the best distribution given every possible number of remaining resources.

Elements mixing algorithm

Not sure about title.
Here is what I need.
Lets for example have this set of elements 20*A, 10*B, 5*C, 5*D, 2*E, 1*F
I need to mix them so there are not two same elements next to each other and also I can for example say I don't want B and C to be next to each other. Elements have to be evenly spread (if there are 2 E one should be near begining/ in firs half a and second near end/in second half. Number of elements can of course change.
I haven't done anything like this yet. Is there some knowledge-base of this kind of algorithms where could I find some hints and methods how to solve this kind of problem or do I have to do all the math myself?
I think the solution is pretty easy.
Start with an array x initialised to empty values such that there is one space for each item you need to place.
Then, for each (item, frequency) pair in descending order of frequency, assign item values to x in alternating slots starting from the first empty slot.
Here's how it works for your example:
20*A A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A
10*B ABABABABABABABABABABA_A_A_A_A_A_A_A_A_A
5*C ABABABABABABABABABABACACACACACA_A_A_A_A
2*E ABABABABABABABABABABACACACACACAEAEA_A_A
1*F ABABABABABABABABABABACACACACACAEAEAFA_A
At this point we fail, since x still has an empty slot. Note that we could have identified this right from the start since we need at least 19 slots between the As, but we only have 18 other items.
UPDATE
Leonidas has now explained that the items should be distributed "evenly" (that is, if we have k items of a particular kind, and n slots to fill, each "bucket" of n/k slots must contain one item of that kind.
We can adapt to this constraint by spreading out our allocations rather than simply going for alternating slots. In this case (and let's assume 2 Fs so we can solve this), we would have
20*A A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A
10*B ABA_ABA_ABA_ABA_ABA_ABA_ABA_ABA_ABA_ABA
5*C ABACABA_ABACABA_ABACABA_ABACABA_ABACABA
2*E ABACABAEABACABA_ABACABAEABACABA_ABACABA
2*F ABACABAEABACABAFABACABAEABACABAFABACABA
You can solve this problem recursively:
def generate(lastChar, remDict):
res = []
for i in remDict:
if i!=lastChar):
newRemDict = remDict
newRemDict[i]-=1
subres = generate(i,newRemDict)
res += [i+j for j in subres]
return res
Note that I am leaving out corner conditions and many checks that need to be done. But only the core recursion is shown. You can also quit pursuing a branch if more than half+1 of the remaining letters is a same letter.
I ran into a similar problem, and after evaluating various metrics, I came up with the idea of grabbing the first item for which the proportion through the source array is less than the proportion through the result array. There is a case where all of these values may come out as 1, for instance when halfway through merging a group of even arrays - everything's exactly half done - so I grab something from the first array in that case.
This solution does use the source array order, which is something that I wanted. If the calling routine wants to merge arrays A, B, and C, where A has 3 elements but B and C have 2, we should get A,B,C,A,B,C,A, not A,C,B,A,C,B,A or other possibilities. I find that choosing the first of my source arrays that's "overdue" (by having a proportion that's lower than our overall progress), I get a nice spacing with all arrays.
Source in Python:
#classmethod
def intersperse_arrays(cls, arrays: list):
# general idea here is to produce a result with as even a balance as possible between all the arrays as we go down.
# Make sure we don't have any component arrays of length 0 to worry about.
arrays = [array for array in arrays if len(array) > 0]
# Handle basic cases:
if len(arrays) == 0:
return []
if len(arrays) == 1:
return arrays[0]
ret = []
num_used = []
total_count = 0
for j in range(0, len(arrays)):
num_used.append(0)
total_count += len(arrays[j])
while len(ret) < total_count:
first_overdue_array = None
first_remaining_array = None
overall_prop = len(ret) / total_count
for j in range(0, len(arrays)):
# Continue if this array is already done.
if len(arrays[j]) <= num_used[j]:
continue
current_prop = num_used[j] / len(arrays[j])
if current_prop < overall_prop:
first_overdue_array = j
break
elif first_remaining_array is None:
first_remaining_array = j
if first_overdue_array is not None:
next_array = first_overdue_array
else:
# Think this only happens in an exact tie. (Halfway through all arrays, for example.)
next_array = first_remaining_array
if next_array is None:
log.error('Internal error in intersperse_arrays')
break # Shouldn't happen - hasn't been seen.
ret.append(arrays[next_array][num_used[next_array]])
num_used[next_array] += 1
return ret
When used on the example given, I got:
ABCADABAEABACABDAFABACABADABACDABAEABACABAD
(Seems reasonable.)

Determine whether a symbol is part of the ith combination nCr

UPDATE:
Combinatorics and unranking was eventually what I needed.
The links below helped alot:
http://msdn.microsoft.com/en-us/library/aa289166(v=vs.71).aspx
http://www.codeproject.com/Articles/21335/Combinations-in-C-Part-2
The Problem
Given a list of N symbols say {0,1,2,3,4...}
And NCr combinations of these
eg. NC3 will generate:
0 1 2
0 1 3
0 1 4
...
...
1 2 3
1 2 4
etc...
For the ith combination (i = [1 .. NCr]) I want to determine Whether a symbol (s) is part of it.
Func(N, r, i, s) = True/False or 0/1
eg. Continuing from above
The 1st combination contains 0 1 2 but not 3
F(N,3,1,"0") = TRUE
F(N,3,1,"1") = TRUE
F(N,3,1,"2") = TRUE
F(N,3,1,"3") = FALSE
Current approaches and tibits that might help or be related.
Relation to matrices
For r = 2 eg. 4C2 the combinations are the upper (or lower) half of a 2D matrix
1,2 1,3 1,4
----2,3 2,4
--------3,4
For r = 3 its the corner of a 3D matrix or cube
for r = 4 Its the "corner" of a 4D matrix and so on.
Another relation
Ideally the solution would be of a form something like the answer to this:
Calculate Combination based on position
The nth combination in the list of combinations of length r (with repitition allowed), the ith symbol can be calculated
Using integer division and remainder:
n/r^i % r = (0 for 0th symbol, 1 for 1st symbol....etc)
eg for the 6th comb of 3 symbols the 0th 1st and 2nd symbols are:
i = 0 => 6 / 3^0 % 3 = 0
i = 1 => 6 / 3^1 % 3 = 2
i = 2 => 6 / 3^2 % 3 = 0
The 6th comb would then be 0 2 0
I need something similar but with repition not allowed.
Thank you for following this question this far :]
Kevin.
I believe your problem is that of unranking combinations or subsets.
I will give you an implementation in Mathematica, from the package Combinatorica, but the Google link above is probably a better place to start, unless you are familiar with the semantics.
UnrankKSubset::usage = "UnrankKSubset[m, k, l] gives the mth k-subset of set l, listed in lexicographic order."
UnrankKSubset[m_Integer, 1, s_List] := {s[[m + 1]]}
UnrankKSubset[0, k_Integer, s_List] := Take[s, k]
UnrankKSubset[m_Integer, k_Integer, s_List] :=
Block[{i = 1, n = Length[s], x1, u, $RecursionLimit = Infinity},
u = Binomial[n, k];
While[Binomial[i, k] < u - m, i++];
x1 = n - (i - 1);
Prepend[UnrankKSubset[m - u + Binomial[i, k], k-1, Drop[s, x1]], s[[x1]]]
]
Usage is like:
UnrankKSubset[5, 3, {0, 1, 2, 3, 4}]
{0, 3, 4}
Yielding the 6th (indexing from 0) length-3 combination of set {0, 1, 2, 3, 4}.
There's a very efficient algorithm for this problem, which is also contained in the recently published:Knuth, The Art of Computer Programming, Volume 4A (section 7.2.1.3).
Since you don't care about the order in which the combinations are generated, let's use the lexicographic order of the combinations where each combination is listed in descending order. Thus for r=3, the first 11 combinations of 3 symbols would be: 210, 310, 320, 321, 410, 420, 421, 430, 431, 432, 510. The advantage of this ordering is that the enumeration is independent of n; indeed it is an enumeration over all combinations of 3 symbols from {0, 1, 2, …}.
There is a standard method to directly generate the ith combination given i, so to test whether a symbol s is part of the ith combination, you can simply generate it and check.
Method
How many combinations of r symbols start with a particular symbol s? Well, the remaining r-1 positions must come from the s symbols 0, 1, 2, …, s-1, so it's (s choose r-1), where (s choose r-1) or C(s,r-1) is the binomial coefficient denoting the number of ways of choosing r-1 objects from s objects. As this is true for all s, the first symbol of the ith combination is the smallest s such that
&Sum;k=0s(k choose r-1) ≥ i.
Once you know the first symbol, the problem reduces to finding the (i - &Sum;k=0s-1(k choose r-1))-th combination of r-1 symbols, where we've subtracted those combinations that start with a symbol less than s.
Code
Python code (you can write C(n,r) more efficiently, but this is fast enough for us):
#!/usr/bin/env python
tC = {}
def C(n,r):
if tC.has_key((n,r)): return tC[(n,r)]
if r>n-r: r=n-r
if r<0: return 0
if r==0: return 1
tC[(n,r)] = C(n-1,r) + C(n-1,r-1)
return tC[(n,r)]
def combination(r, k):
'''Finds the kth combination of r letters.'''
if r==0: return []
sum = 0
s = 0
while True:
if sum + C(s,r-1) < k:
sum += C(s,r-1)
s += 1
else:
return [s] + combination(r-1, k-sum)
def Func(N, r, i, s): return s in combination(r, i)
for i in range(1, 20): print combination(3, i)
print combination(500, 10000000000000000000000000000000000000000000000000000000000000000)
Note how fast this is: it finds the 10000000000000000000000000000000000000000000000000000000000000000th combination of 500 letters (it starts with 542) in less than 0.5 seconds.
I have written a class to handle common functions for working with the binomial coefficient, which is the type of problem that your problem falls under. It performs the following tasks:
Outputs all the K-indexes in a nice format for any N choose K to a file. The K-indexes can be substituted with more descriptive strings or letters. This method makes solving this type of problem quite trivial.
Converts the K-indexes to the proper index of an entry in the sorted binomial coefficient table. This technique is much faster than older published techniques that rely on iteration. It does this by using a mathematical property inherent in Pascal's Triangle. My paper talks about this. I believe I am the first to discover and publish this technique, but I could be wrong.
Converts the index in a sorted binomial coefficient table to the corresponding K-indexes.
Uses Mark Dominus method to calculate the binomial coefficient, which is much less likely to overflow and works with larger numbers.
The class is written in .NET C# and provides a way to manage the objects related to the problem (if any) by using a generic list. The constructor of this class takes a bool value called InitTable that when true will create a generic list to hold the objects to be managed. If this value is false, then it will not create the table. The table does not need to be created in order to perform the 4 above methods. Accessor methods are provided to access the table.
There is an associated test class which shows how to use the class and its methods. It has been extensively tested with 2 cases and there are no known bugs.
To read about this class and download the code, see Tablizing The Binomial Coeffieicent.
This class can easily be applied to your problem. If you have the rank (or index) to the binomial coefficient table, then simply call the class method that returns the K-indexes in an array. Then, loop through that returned array to see if any of the K-index values match the value you have. Pretty straight forward...

Compute rank of a combination?

I want to pre-compute some values for each combination in a set of combinations. For example, when choosing 3 numbers from 0 to 12, I'll compute some value for each one:
>>> for n in choose(range(13), 3):
print n, foo(n)
(0, 1, 2) 78
(0, 1, 3) 4
(0, 1, 4) 64
(0, 1, 5) 33
(0, 1, 6) 20
(0, 1, 7) 64
(0, 1, 8) 13
(0, 1, 9) 24
(0, 1, 10) 85
(0, 1, 11) 13
etc...
I want to store these values in an array so that given the combination, I can compute its and get the value. For example:
>>> a = [78, 4, 64, 33]
>>> a[magic((0,1,2))]
78
What would magic be?
Initially I thought to just store it as a 3-d matrix of size 13 x 13 x 13, so I can easily index it that way. While this is fine for 13 choose 3, this would have way too much overhead for something like 13 choose 7.
I don't want to use a dict because eventually this code will be in C, and an array would be much more efficient anyway.
UPDATE: I also have a similar problem, but using combinations with repetitions, so any answers on how to get the rank of those would be much appreciated =).
UPDATE: To make it clear, I'm trying to conserve space. Each of these combinations actually indexes into something take up a lot of space, let's say 2 kilobytes. If I were to use a 13x13x13 array, that would be 4 megabytes, of which I only need 572 kilobytes using (13 choose 3) spots.
Here is a conceptual answer and a code based on how lex ordering works. (So I guess my answer is like that of "moron", except that I think that he has too few details and his links have too many.) I wrote a function unchoose(n,S) for you that works assuming that S is an ordered list subset of range(n). The idea: Either S contains 0 or it does not. If it does, remove 0 and compute the index for the remaining subset. If it does not, then it comes after the binomial(n-1,k-1) subsets that do contain 0.
def binomial(n,k):
if n < 0 or k < 0 or k > n: return 0
b = 1
for i in xrange(k): b = b*(n-i)/(i+1)
return b
def unchoose(n,S):
k = len(S)
if k == 0 or k == n: return 0
j = S[0]
if k == 1: return j
S = [x-1 for x in S]
if not j: return unchoose(n-1,S[1:])
return binomial(n-1,k-1)+unchoose(n-1,S)
def choose(X,k):
n = len(X)
if k < 0 or k > n: return []
if not k: return [[]]
if k == n: return [X]
return [X[:1] + S for S in choose(X[1:],k-1)] + choose(X[1:],k)
(n,k) = (13,3)
for S in choose(range(n),k): print unchoose(n,S),S
Now, it is also true that you can cache or hash values of both functions, binomial and unchoose. And what's nice about this is that you can compromise between precomputing everything and precomputing nothing. For instance you can precompute only for len(S) <= 3.
You can also optimize unchoose so that it adds the binomial coefficients with a loop if S[0] > 0, instead of decrementing and using tail recursion.
You can try using the lexicographic index of the combination. Maybe this page will help: http://saliu.com/bbs/messages/348.html
This MSDN page has more details: Generating the mth Lexicographical Element of a Mathematical Combination.
NOTE: The MSDN page has been retired. If you download the documentation at the above link, you will find the article on page 10201 of the pdf that is downloaded.
To be a bit more specific:
When treated as a tuple, you can order the combinations lexicographically.
So (0,1,2) < (0,1,3) < (0,1,4) etc.
Say you had the number 0 to n-1 and chose k out of those.
Now if the first element is zero, you know that it is one among the first n-1 choose k-1.
If the first element is 1, then it is one among the next n-2 choose k-1.
This way you can recursively compute the exact position of the given combination in the lexicographic ordering and use that to map it to your number.
This works in reverse too and the MSDN page explains how to do that.
Use a hash table to store the results. A decent hash function could be something like:
h(x) = (x1*p^(k - 1) + x2*p^(k - 2) + ... + xk*p^0) % pp
Where x1 ... xk are the numbers in your combination (for example (0, 1, 2) has x1 = 0, x2 = 1, x3 = 2) and p and pp are primes.
So you would store Hash[h(0, 1, 2)] = 78 and then you would retrieve it the same way.
Note: the hash table is just an array of size pp, not a dict.
I would suggest a specialised hash table. The hash for a combination should be the exclusive-or of the hashes for the values. Hashes for values are basically random bit-patterns.
You could code the table to cope with collisions, but it should be fairly easy to derive a minimal perfect hash scheme - one where no two three-item combinations give the same hash value, and where the hash-size and table-size are kept to a minimum.
This is basically Zobrist hashing - think of a "move" as adding or removing one item of the combination.
EDIT
The reason to use a hash table is that the lookup performance O(n) where n is the number of items in the combination (assuming no collisions). Calculating lexicographical indexes into the combinations is significantly slower, IIRC.
The downside is obviously the up-front work done to generate the table.
For now, I've reached a compromise: I have a 13x13x13 array which just maps to the index of the combination, taking up 13x13x13x2 bytes = 4 kilobytes (using short ints), plus the normal-sized (13 choose 3) * 2 kilobytes = 572 kilobytes, for a total of 576 kilobytes. Much better than 4 megabytes, and also faster than a rank calculation!
I did this partly cause I couldn't seem to get Moron's answer to work. Also this is more extensible - I have a case where I need combinations with repetitions, and I haven't found a way to compute the rank of those, yet.
What you want are called combinadics. Here's my implementation of this concept, in Python:
def nthresh(k, idx):
"""Finds the largest value m such that C(m, k) <= idx."""
mk = k
while ncombs(mk, k) <= idx:
mk += 1
return mk - 1
def idx_to_set(k, idx):
ret = []
for i in range(k, 0, -1):
element = nthresh(i, idx)
ret.append(element)
idx -= ncombs(element, i)
return ret
def set_to_idx(input):
ret = 0
for k, ck in enumerate(sorted(input)):
ret += ncombs(ck, k + 1)
return ret
I have written a class to handle common functions for working with the binomial coefficient, which is the type of problem that your problem falls under. It performs the following tasks:
Outputs all the K-indexes in a nice format for any N choose K to a file. The K-indexes can be substituted with more descriptive strings or letters. This method makes solving this type of problem quite trivial.
Converts the K-indexes to the proper index of an entry in the sorted binomial coefficient table. This technique is much faster than older published techniques that rely on iteration and it does not use very much memory. It does this by using a mathematical property inherent in Pascal's Triangle. My paper talks about this. I believe I am the first to discover and publish this technique, but I could be wrong.
Converts the index in a sorted binomial coefficient table to the corresponding K-indexes.
Uses Mark Dominus method to calculate the binomial coefficient, which is much less likely to overflow and works with larger numbers.
The class is written in .NET C# and provides a way to manage the objects related to the problem (if any) by using a generic list. The constructor of this class takes a bool value called InitTable that when true will create a generic list to hold the objects to be managed. If this value is false, then it will not create the table. The table does not need to be created in order to perform the 4 above methods. Accessor methods are provided to access the table.
There is an associated test class which shows how to use the class and its methods. It has been extensively tested with 2 cases and there are no known bugs.
To read about this class and download the code, see Tablizing The Binomial Coeffieicent.
It should not be hard to convert this class to C++.

Resources