Should exceptions be defined in use cases? - project-management

Say you have a use case called 'schedule meeting.' Defined in the spec, meetings can only be scheduled for the current time or the future. In the Use Case should it include the flow where "if the date/time given is in the past, a message box will show 'meeting time cannot be in the past'"?
Like I said, it's defined in the spec that the date/time cannot be in the past, but in the use case definition, should it be defined there as well?

The business work flows should not be technical if they can be avoided.
Saying something like 'The User shall see an Error under these conditions..." is ok, but it is up to the developers to define how to implement that. Exceptions might be a good way, but the business stake holders should be indifferent to the implementation details.

I'm glad that I found this old thread! I've just read the wiki entry for use-case exceptions, and it threw up some problems for me.
Let me just say that, as I understand a use case to be properly used, you should not make a past-date meeting an exception.
A use case expresses a requirement, in this case, to schedule a meeting. Dealing with invalid meeting requests actually is a part of the scheduling process, and not an exception to it.
The requirement exists, without exception, as does the use case. Invalid dates are a detail item. Think of your use case as a more general, table of contents.
If you are modelling iteratively, you will 'discover' and manage the requirement to reject invalid meeting requests, as you elaborate your model/document.
,

I'm glad that I found this old thread! I've just read the wiki entry for use-case exceptions, and it threw up some problems for me.
Let me just say that, as I understand a use case to be properly used, you should not make a past-date meeting an exception.
A use case expresses a requirement, in this case, to schedule a meeting. Dealing with invalid meeting requests actually is a part of the scheduling process, and not an exception to it.
The requirement exists, without exception, as does the use case. Invalid dates are a detail item. Think of your use case as a more general, table of contents.
If you are modelling iteratively, you will 'discover' and manage the requirement to reject invalid meeting requests, as you elaborate your model/document.
Put even more succinctly, you have described a schedule meeting function. A UML use case should not be used for functional-driven development.

Related

Compensating Events on CQRS/ES Architecture

So, I'm working on a CQRS/ES project in which we are having some doubts about how to handle trivial problems that would be easy to handle in other architectures
My scenario is the following:
I have a customer CRUD REST API and each customer has unique document(number), so when I'm registering a new customer I have to verify if there is another customer with that document to avoid duplicity, but when it comes to a CQRS/ES architecture where we have eventual consistency, I found out that this kind of validations can be very hard to address.
It is important to notice that my problem is not across microservices, but between the command application and the query application of the same microservice.
Also we are using eventstore.
My current solution:
So what I do today is, in my command application, before saving the CustomerCreated event, I ask the query application (using PostgreSQL) if there is a customer with that document, and if not, I allow the event to go on. But that doesn't guarantee 100%, right? Because my query can be desynchronized, so I cannot trust it 100%. That's when my second validation kicks in, when my query application is processing the events and saving them to my PostgreSQL, I check again if there is a customer with that document and if there is, I reject that event and emit a compensating event to undo/cancel/inactivate the customer with the duplicated document, therefore finishing that customer stream on eventstore.
Altough this works, there are 2 things that bother me here, the first thing is my command application relying on the query application, so if my query application is down, my command is affected (today I just return false on my validation if query is down but still...) and second thing is, should a query/read model really be able to emit events? And if so, what is the correct way of doing it? Should the command have some kind of API for that? Or should the query emit the event directly to eventstore using some common shared library? And if I have more than one view/read? Which one should I choose to handle this?
Really hope someone could shine a light into these questions and help me this these matters.
For reference, you may want to be reviewing what Greg Young has written about Set Validation.
I ask the query application (using PostgreSQL) if there is a customer with that document, and if not, I allow the event to go on. But that doesn't guarantee 100%, right?
That's exactly right - your read model is stale copy, and may not have all of the information collected by the write model.
That's when my second validation kicks in, when my query application is processing the events and saving them to my PostgreSQL, I check again if there is a customer with that document and if there is, I reject that event and emit a compensating event to undo/cancel/inactivate the customer with the duplicated document, therefore finishing that customer stream on eventstore.
This spelling doesn't quite match the usual designs. The more common implementation is that, if we detect a problem when reading data, we send a command message to the write model, telling it to straighten things out.
This is commonly referred to as a process manager, but you can think of it as the automation of a human supervisor of the system. Conceptually, a process manager is an event sourced collection of messages to be sent to the command model.
You might also want to consider whether you are modeling your domain correctly. If documents are supposed to be unique, then maybe the command model should be using the document number as a key in the book of record, rather than using the customer. Or perhaps the document id should be a function of the customer data, rather than being an arbitrary input.
as far as I know, eventstore doesn't have transactions across different streams
Right - one of the things you really need to be thinking about in general is where your stream boundaries lie. If set validation has significant business value, then you really need to be thinking about getting the entire set into a single stream (or by finding a way to constrain uniqueness without using a set).
How should I send a command message to the write model? via API? via a message broker like Kafka?
That's plumbing; it doesn't really matter how you do it, so long as you are sure that the command runs within its own transaction/unit of work.
So what I do today is, in my command application, before saving the CustomerCreated event, I ask the query application (using PostgreSQL) if there is a customer with that document, and if not, I allow the event to go on. But that doesn't guarantee 100%, right? Because my query can be desynchronized, so I cannot trust it 100%.
No, you cannot safely rely on the query side, which is eventually consistent, to prevent the system to step into an invalid state.
You have two options:
You permit the system to enter in a temporary, pending state and then, eventually, you will bring it into a valid permanent state; for this you could allow the command to pass, yield CustomerRegistered event and using a Saga/Process manager you verify against a uniquely-indexed-by-document-collection and issue a compensating command (not event!), i.e. UnregisterCustomer.
Instead of sending a command, you create&start a Saga/Process that preallocates the document in a uniquely-indexed-by-document-collection and if successfully then send the RegisterCustomer command. You can model the Saga as an entity.
So, in both solution you use a Saga/Process manager. In order for the system to be resilient you should make sure that RegisterCustomer command is idempotent (so you can resend it if the Saga fails/is restarted)
You've butted up against a fairly common problem. I think the other answer by VoicOfUnreason is worth reading. I just wanted to make you aware of a few more options.
A simple approach I have used in the past is to create a lookup table. Your command tries to register the key in a unique constraint table. If it can reserve the key the command can go ahead.
Depending on the nature of the data and the domain you could let this 'problem' occur and raise additional events to mark it. If it is something that's important to the business/the way the application works then you can deal with it either manually or at the time via compensating commands. if the latter then it would make sense to use a process manager.
In some (rare) cases where speed/capacity is less of an issue then you could consider old-fashioned locking and transactions. Admittedly these are much better suited to CRUD style implementations but they can be used in CQRS/ES.
I have more detail on this in my blog post: How to Handle Set Based Consistency Validation in CQRS
I hope you find it helpful.

How to use compensating measures in an CQRS and DDD based application

Let's assume we host two microservices: RealEstate and Candidate.
The RealEstate service is responsible for managing rental properties, landlords and so forth.
The Candidate service provides commands to apply for a rental property.
There would be a CandidateForRentalProperty command which requires the RentalPropertyId and all necessary Candidate information.
Now the crucial point: Different types of RentalPropertys require a different set of Candidate information.
Therefore the commands and aggregates got splitten up:
Commands: CandidateForParkingLot, CandidateForFlat, and so forth.
Aggregates: ParkingLotCandidature, FlatCandidature, and so forth.
The UI asks the read model to decide which command has to be called.
It's reasonable for me to validate the Candidate information and all the business logic involved with that in the Candidate domain layer, but leave out validation whether the correct command got called based on the given RentalPropertyId. Reason: Multiple aggregates are involved in this validation.
The microservice should be autonomous and it's read model consumes events from the RealEstate domain, hence it's not guaranteed to be up to date. We don't want to reject candidates based on that but rather use eventual consistency.
Yes, this could lead to inept Candidate information used for a certain kind of RentalProperty. Someone could just call the CandidateForFlat command with a parking lot rental property id.
But how do we handle the cases in which this happens?
The RealEstate domain does not know anything about Candidates.
Would there be an event handler which checks if there is something wrong and execute an appropriate command to compensate?
On the other hand, this "mapping" is domain logic and I'd like to accomodate it in the domain layer. But I don't know who's accountable for this kind of compensating measures. Would the Candidate aggregate be informed, like IneptApplicationTypeUsed or something like that?
As an aside - commands are usually imperative verbs. ApplyForFlat might be a better spelling than CandidateForFlat.
The pattern you are probably looking for here is that of an exception report; when the candidate service matches a CandidateForFlat message with a ParkingLot identifier, then the candidate service emits as an output a message saying "hey, we've got a problem here".
If a follow up message fixes the problem -- the candidate service gets an updated message that fixes the identifier in the CandidateForFlat message, or the candidate service gets an update from real estate announcing that the identifier actually points to a Flat, then the candidate service can emit another message "never mind, the problem has been fixed"
I tend to find in this pattern that the input commands to the service are really all just variations of handle(Event); the user submitted, the http request arrived; the only question is whether or not the microservice chooses to track that event. In other words, the "command" stream is just another logical event source that the microservice is subscribed to.
As you said, validation of commands should be performed at the point of command generation - at client side - where read models are available.
Command processing is performed by aggregate, so it cannot and should not check validity or existence of other aggregates. So it should trust a command issuer.
If commands comes from an untrusted environment like public API, then your API gateway becomes a client, and it should have necessary read models to validate references.
If you want to accept a command fast and check it later, then log events like ClientAppliedForParkingLot, and have a Saga/Process manager handle further workflow by keeping its internal state, and issuing commands like AcceptApplication or RejectApplication.
I understand the need for validation but I don't think the example you gave calls for cross-Aggregate (or cross-microservice for that matter) compensating measures as stated in the Q title.
Verifications like checking that the ID the client gave along with the flat rental command matches a flat and not a parking lot, that the client has permission to do that, and so forth, are legitimate. But letting the client create such commands in the wild and waiting for an external actor to come around and enforce these rules seems subpar because the rules could be made intrinsic properties of the object originating the process.
So what I'd recommend is to change the entry point into the operation - to create the Candidature Aggregate Root as part of another Aggregate Root's behavior. If that other Aggregate (RentalProperty in our case) lives in another Bounded Context/microservice, you can maintain a list of RentalProperties in the Candidate Bounded Context with just the amount of info needed, and initiate the Candidature from there.
So you would have
FlatCandidatureHandler ==loads==> RentalProperty ==creates==> FlatCandidature
or
FlatCandidatureHandler ==checks existence==> local RentalProperty data
==creates==> FlatCandidature
As a side note, what could actually necessitate compensating actions are factors extrinsic to the root object of the process. For instance, if the property becomes unavailable in the mean time. Then whatever Aggregate holds that information should emit an event when that happens and the compensation should be initiated.

Additional validation logic before sending a request to the external system

I'm publishing a comment on Instagram using their API. In the documentation they describe the rules that the message that is being sent has to pass. So far my approach always was to add the validation layer just before the message would be sent to the service checking if it satisfies all the requirements. I preferred to get back to the user quicker with the proper error without sending any requests to the social network.
It requires to maintain additional logic in my application and in case of Instagram, where rules are not so simple (like e.g. just limiting the length of the message) I started thinking if that's the optimal approach.
For example, one of the requirements on comments is that they cannot contain more than 4 hashtags which forces me to keep some logic to be able to check how many hashtags are in a string.
Would you think that the effort put into keeping that validation is worth it? I always thought so, but am not so sure any more.
Would you think that the effort put into keeping that validation is
worth it? I always thought so, but am not so sure any more.
Absolutely yes unless you don't care about user at all.
User is your primary value and his comfort is above all things. So, double validation is a must for a good software.
I think you shouldn't struggle to implement absolutely ALL Instagram checks, but at least most of those, that users fail most often.

Design of notification events

I am designing some events that will be raised when actions are performed or data changes in a system. These events will likely be consumed by many different services and will be serialized as XML, although more broadly my question also applies to the design of more modern funky things like Webhooks.
I'm specifically thinking about how to describe changes with an event and am having difficulty choosing between different implementations. Let me illustrate my quandry.
Imagine a customer is created, and a simple event is raised.
<CustomerCreated>
<CustomerId>1234</CustomerId>
<FullName>Bob</FullName>
<AccountLevel>Silver</AccountLevel>
</CustomerCreated>
Now let's say Bob spends lots of money and becomes a gold customer, or indeed any other property changes (e.g.: he now prefers to be known as Robert). I could raise an event like this.
<CustomerModified>
<CustomerId>1234</CustomerId>
<FullName>Bob</FullName>
<AccountLevel>Gold</AccountLevel>
</CustomerModified>
This is nice because the schema of the Created and Modified events are the same and any subscriber receives the complete current state of the entity. However it is difficult for any receiver to determine which properties have changed without tracking state themselves.
I then thought about an event like this.
<CustomerModified>
<CustomerId>1234</CustomerId>
<AccountLevel>Gold</AccountLevel>
</CustomerModified>
This is more compact and only contains the properties that have changed, but comes with the downside that the receiver must apply the changes and reassemble the current state of the entity if they need it. Also, the schemas of the Created and Modified events must be different now; CustomerId is required but all other properties are optional.
Then I came up with this.
<CustomerModified>
<CustomerId>1234</CustomerId>
<Before>
<FullName>Bob</FullName>
<AccountLevel>Silver</AccountLevel>
</Before>
<After>
<FullName>Bob</FullName>
<AccountLevel>Gold</AccountLevel>
</After>
</CustomerModified>
This covers all bases as it contains the full current state, plus a receiver can figure out what has changed. The Before and After elements have the exact same schema type as the Created event. However, it is incredibly verbose.
I've struggled to find any good examples of events; are there any other patterns I should consider?
You tagged the question as "Event Sourcing", but your question seems to be more about Event-Driven SOA.
I agree with #Matt's answer--"CustomerModified" is not granular enough to capture intent if there are multiple business reasons why a Customer would change.
However, I would back up even further and ask you to consider why you are storing Customer information in a local service, when it seems that you (presumably) already have a source of truth for customer. The starting point for consuming Customer information should be getting it from the source when it's needed. Storing a copy of information that can be queried reliably from the source may very well be an unnecessary optimization (and complication).
Even if you do need to store Customer data locally (and there are certainly valid reasons for need to do so), consider passing only the data necessary to construct a query of the source of truth (the service emitting the event):
<SomeInterestingCustomerStateChange>
<CustomerId>1234</CustomerId>
</SomeInterestingCustomerStateChange>
So these event types can be as granular as necessary, e.g. "CustomerAddressChanged" or simply "CustomerChanged", and it is up to the consumer to query for the information it needs based on the event type.
There is not a "one-size-fits-all" solution--sometimes it does make more sense to pass the relevant data with the event. Again, I agree with #Matt's answer if this is the direction you need to move in.
Edit Based on Comment
I would agree that using an ESB to query is generally not a good idea. Some people use an ESB this way, but IMHO it's a bad practice.
Your original question and your comments to this answer and to Matt's talk about only including fields that have changed. This would definitely be problematic in many languages, where you would have to somehow distinguish between a property being empty/null and a property not being included in the event. If the event is getting serialized/de-serialized from/to a static type, it will be painful (if not impossible) to know the difference between "First Name is being set to NULL" and "First Name is missing because it didn't change".
Based on your comment that this is about synchronization of systems, my recommendation would be to send the full set of data on each change (assuming signal+query is not an option). That leaves the interpretation of the data up to each consuming system, and limits the responsibility of the publisher to emitting a more generic event, i.e. "Customer 1234 has been modified to X state". This event seems more broadly useful than the other options, and if other systems receive this event, they can interpret it as they see fit. They can dump/rewrite their own data for Customer 1234, or they can compare it to what they have and update only what changed. Sending only what changed seems more specific to a single consumer or a specific type of consumer.
All that said, I don't think any of your proposed solutions are "right" or "wrong". You know best what will work for your unique situation.
Events should be used to describe intent as well as details, for example, you could have a CustomerRegistered event with all the details for the customer that was registered. Then later in the stream a CustomerMadeGoldAccount event that only really needs to capture the customer Id of the customer who's account was changed to gold.
It's up to the consumers of the events to build up the current state of the system that they are interested in.
This allows only the most pertinent information to be stored in each event, imagine having hundreds of properties for a customer, if every command that changed a single property had to raise an event with all the properties before and after, this gets unwieldy pretty quickly. It's also difficult to determine why the change occurred if you just publish a generic CustomerModified event, which is often a question that is asked about the current state of an entity.
Only capturing data relevant to the event means that the command that issues the event only needs to have enough data about the entity to validate the command can be executed, it doesn't need to even read the whole customer entity.
Subscribers of the events also only need to build up a state for things that they are interested in, e.g. perhaps an 'account level' widget is listening to these events, all it needs to keep around is the customer ids and account levels so that it can display what account level the customer is at.
Instead of trying to convey everything through payload xmls' fields, you can distinguish between different operations based on -
1. Different endpoint URLs depending on the operation(this is preferred)
2. Have an opcode(operation code) as an element in the xml file which tells which operation is to used to handle the incoming request.(more nearer to your examples)
There are a few enterprise patterns applicable to your business case - messaging and its variants, and if your system is extensible then Enterprise Service Bus should be used. An ESB allows reliable handling of events and processing.

EventSourcing fix business logic bugs

I'm making some study of eventsourcing before applying it (or not).
Quick question : When using EventSourcing pattern we can imagine this scenario to handle an event :
command sent
command handler receive the previous command, validate it then
command handler persist this event and publish it
business model apply (business logic algorithm v1 for example) this event mutating its internal state
We can replay all the events and reconstruct the business object state.
How to handle business logic bugs (business logic algorithm v1 contains a nasty bugs).
I read we can fix the bug and replay the events and then we got the business model in a valid state once again.
But what happens if when fixing the business rule when applying event#1 would have caused the 'futurs' commands to fails ? In other words, the event#2, event#3, event#n was dependend of the state of the domain model after applying event#0. How can we fix the cascading events failure ?
I don't have a specific usecase : but we can imagine an account where balance is currently positive. Applying Event#0 increment the balance but this was a bug, the developer wanted to reduce the balance. Event#1 is a purchase that was valid because of the positive balance at this time.
The developer fixes the bug and replay the events. Event#0 decrease the balance which becomes negative. Event#1 is replayed : what happens ?
Do we need to handle this case with 'compensation' ? how ?
thanks in advance for your comments, external ressources that can be of any help (articles, blogs).
bye
Minor correction
When using EventSourcing pattern we can imagine this scenario to handle an event
command sent
command handler receive the previous command, validate it then
business model verifies that the command can be satisfied without violating the business invariant, and calculates the ensuing events
command handler persist this events and publish them
The command handler (specifically, the anti-corruption layer) is responsible for making sure that the command is well formed. The business model decides if the command is permitted by the business.
The good news: the events are just state changes; all of the rule validation is already done. When you fix the bug in the domain object so that it produces the correct events in response to the command, you aren't changing the way the event is applied.
And you certainly aren't changing the history -- if the ATM gave away $20 that it wasn't supposed to, you can't get the money back by editing the record.
What that means is that deploying the bug fix keeps the problem from getting worse; but it doesn't do anything for the event histories that are incorrect.
Compensating events are the right answer here. Ever have a grocery clerk double scan an item, and have to back one of them out? If you look closely, you'll see all three items
+1 candy bar
+1 candy bar
-1 candy bar
That's the idiom of the compensating event being appended to end of the stream.
So if the error showed first appeared in event #0, and then [event #1 .. event #99] have been played on top of that, the remedy for the error is to publish a compensating event #100.
Notice that this is exactly what book keepers would do. You put the wrong sign on the entry on line #1, add a bunch more entries, realize your mistake, and add a new entry that compensates for the earlier mistake.
More good news: in mature business processes, there are already mitigation procedures in place to handle various contingencies. So you can grab a meeting with your domain experts, and doodle on the whiteboard explaining the problem, and your experts should be able to show you the right way to compensate for it. Everything after that is feature management (does the mitigation need to be automated? Does the system need to do the mitigation automatically, or can it let human experts tell it what mitigation to apply, etc. etc.)

Resources