Design of notification events - events

I am designing some events that will be raised when actions are performed or data changes in a system. These events will likely be consumed by many different services and will be serialized as XML, although more broadly my question also applies to the design of more modern funky things like Webhooks.
I'm specifically thinking about how to describe changes with an event and am having difficulty choosing between different implementations. Let me illustrate my quandry.
Imagine a customer is created, and a simple event is raised.
<CustomerCreated>
<CustomerId>1234</CustomerId>
<FullName>Bob</FullName>
<AccountLevel>Silver</AccountLevel>
</CustomerCreated>
Now let's say Bob spends lots of money and becomes a gold customer, or indeed any other property changes (e.g.: he now prefers to be known as Robert). I could raise an event like this.
<CustomerModified>
<CustomerId>1234</CustomerId>
<FullName>Bob</FullName>
<AccountLevel>Gold</AccountLevel>
</CustomerModified>
This is nice because the schema of the Created and Modified events are the same and any subscriber receives the complete current state of the entity. However it is difficult for any receiver to determine which properties have changed without tracking state themselves.
I then thought about an event like this.
<CustomerModified>
<CustomerId>1234</CustomerId>
<AccountLevel>Gold</AccountLevel>
</CustomerModified>
This is more compact and only contains the properties that have changed, but comes with the downside that the receiver must apply the changes and reassemble the current state of the entity if they need it. Also, the schemas of the Created and Modified events must be different now; CustomerId is required but all other properties are optional.
Then I came up with this.
<CustomerModified>
<CustomerId>1234</CustomerId>
<Before>
<FullName>Bob</FullName>
<AccountLevel>Silver</AccountLevel>
</Before>
<After>
<FullName>Bob</FullName>
<AccountLevel>Gold</AccountLevel>
</After>
</CustomerModified>
This covers all bases as it contains the full current state, plus a receiver can figure out what has changed. The Before and After elements have the exact same schema type as the Created event. However, it is incredibly verbose.
I've struggled to find any good examples of events; are there any other patterns I should consider?

You tagged the question as "Event Sourcing", but your question seems to be more about Event-Driven SOA.
I agree with #Matt's answer--"CustomerModified" is not granular enough to capture intent if there are multiple business reasons why a Customer would change.
However, I would back up even further and ask you to consider why you are storing Customer information in a local service, when it seems that you (presumably) already have a source of truth for customer. The starting point for consuming Customer information should be getting it from the source when it's needed. Storing a copy of information that can be queried reliably from the source may very well be an unnecessary optimization (and complication).
Even if you do need to store Customer data locally (and there are certainly valid reasons for need to do so), consider passing only the data necessary to construct a query of the source of truth (the service emitting the event):
<SomeInterestingCustomerStateChange>
<CustomerId>1234</CustomerId>
</SomeInterestingCustomerStateChange>
So these event types can be as granular as necessary, e.g. "CustomerAddressChanged" or simply "CustomerChanged", and it is up to the consumer to query for the information it needs based on the event type.
There is not a "one-size-fits-all" solution--sometimes it does make more sense to pass the relevant data with the event. Again, I agree with #Matt's answer if this is the direction you need to move in.
Edit Based on Comment
I would agree that using an ESB to query is generally not a good idea. Some people use an ESB this way, but IMHO it's a bad practice.
Your original question and your comments to this answer and to Matt's talk about only including fields that have changed. This would definitely be problematic in many languages, where you would have to somehow distinguish between a property being empty/null and a property not being included in the event. If the event is getting serialized/de-serialized from/to a static type, it will be painful (if not impossible) to know the difference between "First Name is being set to NULL" and "First Name is missing because it didn't change".
Based on your comment that this is about synchronization of systems, my recommendation would be to send the full set of data on each change (assuming signal+query is not an option). That leaves the interpretation of the data up to each consuming system, and limits the responsibility of the publisher to emitting a more generic event, i.e. "Customer 1234 has been modified to X state". This event seems more broadly useful than the other options, and if other systems receive this event, they can interpret it as they see fit. They can dump/rewrite their own data for Customer 1234, or they can compare it to what they have and update only what changed. Sending only what changed seems more specific to a single consumer or a specific type of consumer.
All that said, I don't think any of your proposed solutions are "right" or "wrong". You know best what will work for your unique situation.

Events should be used to describe intent as well as details, for example, you could have a CustomerRegistered event with all the details for the customer that was registered. Then later in the stream a CustomerMadeGoldAccount event that only really needs to capture the customer Id of the customer who's account was changed to gold.
It's up to the consumers of the events to build up the current state of the system that they are interested in.
This allows only the most pertinent information to be stored in each event, imagine having hundreds of properties for a customer, if every command that changed a single property had to raise an event with all the properties before and after, this gets unwieldy pretty quickly. It's also difficult to determine why the change occurred if you just publish a generic CustomerModified event, which is often a question that is asked about the current state of an entity.
Only capturing data relevant to the event means that the command that issues the event only needs to have enough data about the entity to validate the command can be executed, it doesn't need to even read the whole customer entity.
Subscribers of the events also only need to build up a state for things that they are interested in, e.g. perhaps an 'account level' widget is listening to these events, all it needs to keep around is the customer ids and account levels so that it can display what account level the customer is at.

Instead of trying to convey everything through payload xmls' fields, you can distinguish between different operations based on -
1. Different endpoint URLs depending on the operation(this is preferred)
2. Have an opcode(operation code) as an element in the xml file which tells which operation is to used to handle the incoming request.(more nearer to your examples)
There are a few enterprise patterns applicable to your business case - messaging and its variants, and if your system is extensible then Enterprise Service Bus should be used. An ESB allows reliable handling of events and processing.

Related

How to deal with "Foreign Key" in microservice architecture?

Quick question on Foreign key in Microservices. I already tried looking for answer. But, they did not give me the exact answer I was looking for.
Usecase : Every blog post will have many comments. Traditional monolith will have comments table with foreign key to blog post. However in microservice, we will have two services.
Service 1 : Post Microservie with these table fields (PostID, Name, Content)
Service 2 : Comments Microservie with these table fields (CommentID, PostID, Cpmment)
The question is, Do we need "PostID" in service 2 (Comments Microservice) ? I guess the answer is yes, as we need to know which comment belongs to which post. But then, it will create tight coupling? I mean if I delete service 1(Blog post service), it will impact service 2(Comments service) ?
I'm going to use another example I'm more familiar with to explain how I believe most people would do this.
Consider an Order Management System (OMS) and an Inventory Management System (IMS).
When a customer places an order in the company web site, we ask the OMS to create an order entry in the backend (e.g. via an HTTP endpoint).
The OMS system then broadcasts an event e.g. OrderPlaced containing all the details of the customer order. We may have a pub/sub (e.g. Redis), or a queue (e.g. RabbitMQ), or an event stream (e.g. Kafka) where we place the event (although this can be done in many other ways).
The thing is that we have one or more subscribers interested in this event. One of those could be the IMS, which has the responsibility of assigning the best inventory available every time an order is placed.
We can expect that the IMS will keep a copy of the relevant order information it received when it processed the OrderPlaced event such that it does not ask every little detail of the order to the OMS all the time. So, if the IMS needed a join with the order, instead of calling an endpoint in the Order API, it would probably just do a join with its local copy of the orders table.
Say now that our customer called to cancel her order. A customer service representative then cancelled it in the OMS Web User Interface. At that point an event OrderCanceled is broadcast. Guess who is listening for that event? Correct, the IMS receives notification and acts accordingly reversing the inventory assignation and probably even deleting the order record because it is no longer necessary on this domain.
So, as you can see, the best way to do this is by using events and making copies of the relevant details on the other domain.
Since events need time to get broadcast and processed by interested parties, we say that the order data in the IMS is eventually consistent.
Followup Questions
Q: So, if I understood right in microservises we prefer to duplicate data and get better performance? That is the concept? I mean I know the concept is scaling and flexibility but when we must share data we will just duplicate it?
Not really. That´s definitively not what I meant although it may have sounded like that due to my poor choice of words in the original explanation. It appears to me that at the heart of your question lies a lack of sufficient understanding of the concept of a bounded context.
In my explanation I meant to indicate that the OMS has a domain concept known as the order, but so does the IMS. Therefore, they both have an entity within their domain that represents it. There is a good chance that the order entity in the OMS is much richer than the corresponding representation of the same concept in the IMS.
For example, if the system I was describing was not for retail, but for wholesale, then the same concept of a "sales order" in our system corresponds to the concept of a "purchase order" in that of our customers. So you see, the same data, mapped under a different name, simply because under a different bounded context the data may have a different perspective and meaning.
So, this is the realization that a given concept from our model may be represented in multiple bounded contexts, perhaps from a different perspective and names from our ubiquitous language.
Just to give another example, the OMS needs to know about the customer, but the representation of the idea of a customer in the OMS is probably different than the same representation of such a concept or entity in the CRM. In the OMS the customer's name, email, shipping and billing addresses are probably enough representation of this idea, but for the CRM the customer encompasses much more.
Another example: the IMS needs to know the shipping address of the customer to choose the best inventory (e.g. the one in a facility closest to its final destination), but probably does not care much about the billing address. On the other hand, the billing address is fundamental for the Payment Management System (PMS). So, both the IMS and PMS may have a concept of an "order", it is just that it is not exactly the same, neither it has the same meaning or perspective, even if we store the same data.
One final example: the accounting system cares about the inventory for accounting purposes, to be able to tell how much we own, but perhaps accounting does not care about the specific location of the inventory within the warehouse, that's a detail only the IMS cares about.
In conclusion, I would not say this is about "copying data", this is about appropriately representing a fundamental concept within your bounded context and the realization that some concepts from the model may overlap between systems and have different representations, sometimes even under different names and levels of details. That's why I suggested that you investigate the idea of context mapping some more.
In other words, from my perspective, it would be a mistake to assume that the concept of an "order" only exists in the OMS. I could probably say that the OMS is the master of record of orders and that if something happens to an order we should let other interested systems know about those events since they care about some of that data because those other systems could have mapping concepts related to orders and when reacting to the changes in the master of record, they probably want to change their data as well.
From this point of view, copying some data is a side effect of having a proper design for the bounded context and not a goal in itself.
I hope that answers your question.

Compensating Events on CQRS/ES Architecture

So, I'm working on a CQRS/ES project in which we are having some doubts about how to handle trivial problems that would be easy to handle in other architectures
My scenario is the following:
I have a customer CRUD REST API and each customer has unique document(number), so when I'm registering a new customer I have to verify if there is another customer with that document to avoid duplicity, but when it comes to a CQRS/ES architecture where we have eventual consistency, I found out that this kind of validations can be very hard to address.
It is important to notice that my problem is not across microservices, but between the command application and the query application of the same microservice.
Also we are using eventstore.
My current solution:
So what I do today is, in my command application, before saving the CustomerCreated event, I ask the query application (using PostgreSQL) if there is a customer with that document, and if not, I allow the event to go on. But that doesn't guarantee 100%, right? Because my query can be desynchronized, so I cannot trust it 100%. That's when my second validation kicks in, when my query application is processing the events and saving them to my PostgreSQL, I check again if there is a customer with that document and if there is, I reject that event and emit a compensating event to undo/cancel/inactivate the customer with the duplicated document, therefore finishing that customer stream on eventstore.
Altough this works, there are 2 things that bother me here, the first thing is my command application relying on the query application, so if my query application is down, my command is affected (today I just return false on my validation if query is down but still...) and second thing is, should a query/read model really be able to emit events? And if so, what is the correct way of doing it? Should the command have some kind of API for that? Or should the query emit the event directly to eventstore using some common shared library? And if I have more than one view/read? Which one should I choose to handle this?
Really hope someone could shine a light into these questions and help me this these matters.
For reference, you may want to be reviewing what Greg Young has written about Set Validation.
I ask the query application (using PostgreSQL) if there is a customer with that document, and if not, I allow the event to go on. But that doesn't guarantee 100%, right?
That's exactly right - your read model is stale copy, and may not have all of the information collected by the write model.
That's when my second validation kicks in, when my query application is processing the events and saving them to my PostgreSQL, I check again if there is a customer with that document and if there is, I reject that event and emit a compensating event to undo/cancel/inactivate the customer with the duplicated document, therefore finishing that customer stream on eventstore.
This spelling doesn't quite match the usual designs. The more common implementation is that, if we detect a problem when reading data, we send a command message to the write model, telling it to straighten things out.
This is commonly referred to as a process manager, but you can think of it as the automation of a human supervisor of the system. Conceptually, a process manager is an event sourced collection of messages to be sent to the command model.
You might also want to consider whether you are modeling your domain correctly. If documents are supposed to be unique, then maybe the command model should be using the document number as a key in the book of record, rather than using the customer. Or perhaps the document id should be a function of the customer data, rather than being an arbitrary input.
as far as I know, eventstore doesn't have transactions across different streams
Right - one of the things you really need to be thinking about in general is where your stream boundaries lie. If set validation has significant business value, then you really need to be thinking about getting the entire set into a single stream (or by finding a way to constrain uniqueness without using a set).
How should I send a command message to the write model? via API? via a message broker like Kafka?
That's plumbing; it doesn't really matter how you do it, so long as you are sure that the command runs within its own transaction/unit of work.
So what I do today is, in my command application, before saving the CustomerCreated event, I ask the query application (using PostgreSQL) if there is a customer with that document, and if not, I allow the event to go on. But that doesn't guarantee 100%, right? Because my query can be desynchronized, so I cannot trust it 100%.
No, you cannot safely rely on the query side, which is eventually consistent, to prevent the system to step into an invalid state.
You have two options:
You permit the system to enter in a temporary, pending state and then, eventually, you will bring it into a valid permanent state; for this you could allow the command to pass, yield CustomerRegistered event and using a Saga/Process manager you verify against a uniquely-indexed-by-document-collection and issue a compensating command (not event!), i.e. UnregisterCustomer.
Instead of sending a command, you create&start a Saga/Process that preallocates the document in a uniquely-indexed-by-document-collection and if successfully then send the RegisterCustomer command. You can model the Saga as an entity.
So, in both solution you use a Saga/Process manager. In order for the system to be resilient you should make sure that RegisterCustomer command is idempotent (so you can resend it if the Saga fails/is restarted)
You've butted up against a fairly common problem. I think the other answer by VoicOfUnreason is worth reading. I just wanted to make you aware of a few more options.
A simple approach I have used in the past is to create a lookup table. Your command tries to register the key in a unique constraint table. If it can reserve the key the command can go ahead.
Depending on the nature of the data and the domain you could let this 'problem' occur and raise additional events to mark it. If it is something that's important to the business/the way the application works then you can deal with it either manually or at the time via compensating commands. if the latter then it would make sense to use a process manager.
In some (rare) cases where speed/capacity is less of an issue then you could consider old-fashioned locking and transactions. Admittedly these are much better suited to CRUD style implementations but they can be used in CQRS/ES.
I have more detail on this in my blog post: How to Handle Set Based Consistency Validation in CQRS
I hope you find it helpful.

Is it ok to have FAT events with event sourcing?

I have recently been building an application on top of Greg Young EventStore as my peristance layer and I have been pondering how big should I allow an event to get?
For example I have an UK Address Aggregate with the following fields
UK_Address
-BuildingName
-Street
-Locality
-Town
-Postcode
Now I'm building the UI using React/Redux and was thinking should I create a single FAT addressUpdated Event contatining all the above fields?
Or should I Create a event for each of the different fields? and batch them within the client until the Save event is fired? buildingNameUpdated Event, streetUpdated Event, localityUpdated Event.
I'm not sure if the answer is as black and white ask I have asked it what I really would like to know is what conditions/constraints could you use to make the decision?
should I create a event for each of the different fields?
No. The representations of your events are part of the API -- so you want to use spellings that make sense at the level of the business, not at the level of the implementation.
Now I'm building the UI using React/Redux and was thinking should I create a single FAT updateAddress Event containing all the above fields?
You don't need to constrain the data that you send to your UI to match that which is in the persistence store. The UI is just a cached representation of a read model; there's no reason that representation needs to have the same form as what is in your event store.
Consider the React model itself -- your code makes changes to the "in memory" representation of your data, and then the library computes the new DOM and replaces it, which in turn causes the browser to update its view, which in turn causes the pixels on the screen to change.
So taking a fat event from the store, and breaking it into field level events for the UI is fine. Taking multiple events from the store and aggregating them into a single message for the UI is also fine. Taking events from the event store and transforming them into a spelling that the UI will recognize is also fine.
Do you have any comment regarding Arien answer regarding keeping fields that need to be consistent together? so regardless of when your snapshop the current state of the world it would be in a valid state?
I don't believe that this makes sense, and I'm not sure if it is possible in general.
It doesn't make sense, because "valid state" is a write model concern only; events are things that have happened, its too late to vote on whether they are valid or not. For instance, if you deploy a new model, with a new invariant, it still needs to respect the history of what happened before. So you can build a snapshot for that new model, but the snapshot may not be "valid". Too bad.
Given that, I don't think it makes sense to worry over whether each individual event in a commit leaves the snapshot in a valid state.
In particular, if a particular transaction involves multiple entities, it is very likely that the domain language will suggest an event for each entity (we "debit cash" and "credit accounts receivable"). The entities themselves, of course, are capable of changing independently of each other -- it's the aggregate that maintains the balance.
You have to bundle al the information together in one event when this data has to be consistent with each other.
So when you update one field of an address you probably get an unwanted address.
This will happen when the client has not processed all the events at a certain time due to eventual consistency.
Example:
Change address (City=1, Street=1, Housenumber=1) to (City=2, Street=2, Housenumber=2)
When you do this with 3 events and you have just processed one at the time of reading you could get the address: (City=2, Street=1, Housenumber=1).
If puzzled, give a try to a solution that is easier to implement. I guess "FAT" event will be easier: you will end up spending less time for implementing/debugging/supporting.
It is usually referred as YAGNI-KISS-Occam's Razor principles.
In theory and I find it to be a good rule of thumb is to have your commands and events reflecting the intent of the user staying true to DDD. You can find a good explanation of the pros and cons about event granularity here: https://medium.com/#hugo.oliveira.rocha/what-they-dont-tell-you-about-event-sourcing-6afc23c69e9a

Event-driven architecture and structure of events

I'm new to EDA and I've read a lot about benefits and would probably be interested to apply it during my next project but still haven't understood something.
When raising an event, which pattern is the most suited:
Name the event "CustomerUpdate" and include all information (updated or not) about the customer
Name the event "CustomerUpdate" and include only information that have really been updated
Name the event "CustomerUpdate" and include minimum information (Identifier) and/or a URI to let the consumer retrieves information about this Customer.
I ask the question because some of our events could be heavy and frequent.
Thx for your answers and time.
Name the event "CustomerUpdate"
First let's start with your event name. The purpose of an event is to describe something which has already happenned. This is different from a command, which is to issue an instruction for something yet to happen.
Your event name "CustomerUpdate" sounds ambiguous in this respect, as it could be describing something in the past or something in the future.
CustomerUpdated would be better, but even then, Updated is another ambiguous term, and is nonspecific in a business context. Why was the customer updated in this instance? Was it because they changed their payment details? Moved home? Were they upgraded from silver to gold status? Events can be made as specific as needed.
This may seem at first to be overthinking, but event naming becomes especially relevant as you remove data and context from the event payload, moving more toward skinny events (the "option 3" from your question, which I discuss below).
That is not to suggest that it is always appropriate to define events at this level of granularity, only that it is an avenue which is open to you early on in the project which may pay dividends later on (or may swamp you with thousands of event types).
Going back to your actual question, let's take each of your options in turn:
Name the event "CustomerUpdate" and include all information (updated
or not) about the customer
Let's call this "pattern" the Fat message.
Fat messages (also called snapshots) represent the state of the described entity at a given point in time with all the event context present in the payload. They are interesting because the message itself represents the contract between service and consumer. They can be used for communicating changes of state between business domains, where it may be preferred that all event context be present during message processing by the consumer.
Advantages:
Self consistent - can be consumed entirely without knowledge of other systems.
Simple to consume (upsert).
Disadvantages:
Brittle - the contract between service and consumer is coupled to the message itself.
Easy to overwrite current data with old data if messages arrive in the wrong order (hint: you can mitigate this by using the event sourcing pattern)
Large.
Name the event "CustomerUpdate" and include only information that have
really been updated
Let's call this pattern the Delta message.
Deltas are similar to fat messages in many ways, though they are generally more complex to generate and consume. A good example here is the JSONPatch standard.
Because they are only a partial description of the event entity, deltas also come with a built-in assumption that the consumer knows something about the event being described. For this reason they may be less suitable for sending outside a business domain, where the event entity may not be well known.
Deltas really shine when synchronising data between systems sharing the same entity model, ideally persisted in non-relational storage (eg, no-sql). In this instance an entity can be retrieved, the delta applied, and then persisted again with minimal effort.
Advantages:
Smaller than Fat messages
Excels in use cases involving shared entity models
Portable (if based on a standard such as jsonpatch, or to a lesser extent, diffgram)
Disadvantages:
Similar to the Fat message, assumes complete knowledge of the data entity.
Easy to overwrite current data with old data.
Complex to generate and consume (except for specific use cases)
Name the event "CustomerUpdate" and include minimum information
(Identifier) and/or a URI to let the consumer retrieves information
about this Customer.
Let's call this the Skinny message.
Skinny messages are different from the other message patterns you have defined, in that the service/consumer contract is no longer explicit in the message, but implied in that at some later time the consumer will retrieve the event context. This decouples the contract and the message exchange, which is a good thing.
This may or may not lend itself well to cross-business domain communication of events, depending on how your enterprise is set up. Because the event payload is so small (usually an ID with some headers), there is no context other than the name of the event on which the consumer can base processing decisions; therefore it becomes more important to make sure the event is named appropriately, especially if there are multiple ways a consumer could handle a CustomerUpdated message.
Additionally it may not be good practice to include an actual resource address in the event data - because events are things which have already happened, event messages are generally immutable and therefore any information in the event should be true forever in case the events need to be replayed. In this instance a resource address could easily become obsolete and events would not be re-playable.
Advantages:
Decouples service contract from message.
Information about the event contained in the event name.
Naturally idempotent (with time-stamp).
Generally tiny.
Simple to generate and consume.
Disadvantages:
Consumer must make additional call to retrieve event context - requires explicit knowledge of other systems.
Event context may have become obsolete at the point where the consumer retrieves it, making this approach generally unsuitable for some real-time applications.
When raising an event, which pattern is the most suited?
I think the answer to this is: it depends on lots of things, and there is probably no one right answer.
Update from comments: Also worth reading, a very old, classic, blog post on messaging: https://learn.microsoft.com/en-gb/archive/blogs/nickmalik/killing-the-command-message-should-we-use-events-or-documents (also here: http://vanguardea.com/killing-the-command-message-should-we-use-events-or-documents/)
Martin Fowler gave a great talk about "The Many Meanings of Event-Driven Architecture" (the content is based on this paper) in which he mentioned the Event-Carried State Transfer pattern.
It seems to be close to your second option "Delta message" with the difference that it doesn't try to describe an entity, but instead describe a named business fact that happened and carry over all the necessary data to understand this fact.
I don't think it matters how you have modeled your persistence layer when it comes to designing domain events. Likewise, I don't think it matters how your consumer has modeled its own persistence layer when designing domain events.
Thus, I don't think it's wise to put as an advantage the fact that you can apply the event as a patch directly on your data (from a consumer point of view), because it pushes the producer to design their events given the persistence model of a consumer.
In that case, I would tend to think that you're designing persistence patches, instead of domain events.
What do you think?

Events changing state in CQRS

This should be easy to follow, but after some reading I still can find an answer.
So, say that the user needs to change his mobile number, to accomplished that, we might have a command as: ChangedUserMobileNumber
holding the new number. The domain responsible for handling the command will perform the change in the aggregate and publish an event: UserMobilePhoneChanged
There is a subscriber for that event in another domain, which also holds the user mobile number in its aggregate but according to our software architect, events can not old any data so what we end up is rather stupid to say the least:
The Domain 1, receives the command to update the mobile number, the number is updated and one event is published, also, because the event cannot hold data, the command handler in the Domain 1 issues yet another command which is sent to Domain 2. The subscriber of that event lives in Domain 2 too, we then have a Saga to handle both the event and the command.
In terms of implementation we are using NServiceBus, so we have this saga to handle these message and in it we have this line of code, where the entity.IsMobilePhoneUpdated field stored in a saga entity is changed when the event is handeled.
bool isReady = (entity.IsMobilePhoneUpdated && entity.MobilePhoneNumber != null);
Effectively the Saga is started by both the command and the event raised in the Domain 1, and until this condition is met, the saga is kept alive.
If it was up to me, I would be sending the mobile number in the event itself, I just want to get a few other opinions on this.
Thanks
I'm not sure how a UserMobilePhoneChanged event could be useful in any way unless it contained the new phone number. User asks to change a number, the event shoots out that it has. Should be very simple indeed. Why does your architect say that events shouldn't contain any information?
In the first event based system i've designed events also had no data. I also did enforce that rule. At the time that sounded like a clever decision. After a while i realised that it was dumb, and i was making a lot of workarounds because of it. Also this caused a lot of querying form the event subscribers, even for trivial data. I had no problem changing this "rule" after i realised i'm doing it wrong.
Events should have all the data required to make them meaningful. Also they should only have the data that makes sense for that event. ( No point in having the user address in a ChangePhoneNumber message )
If your architect imposes such a restriction, it's not going to be easy to develop a CQRS system. How are the read models updated? Since the events have no data then you either query something to get the data ( the write side ? ) of find some way of sending a command to the read model ( then what's the point of publishing events? ). To fix your problem you should try to have a professional discussion with this architect, preferably including other tech heads and without offending anybody try to get him to relax this constraint.
On argument you could use is Event Sourcing. Event Sourcing is complementary to CQRS and would not make sense without events that have data. Even more when using event sourcing, the only data you have is the data stored in the events. Even if you don't actually implement event sourcing you can use it's existence as a reason for events to have data.
There is little point in finding a technical solution to a people problem.

Resources