Generate a sequence of numbers (powers) in order - algorithm

I'm looking for an algorithm (or better yet, code!) for a the generation of powers, specifically numbers with an odd exponent greater than 1: third powers, fifth powers, seventh powers, and so forth. My desired output is then
8, 27, 32, 125, 128, 216, 243, 343, 512, 1000
and so forth up to a specified limit.
I don't want to store the powers in a list and sort them, because I'm making too many to fit in memory -- hopefully the limit be 1030 or so, corresponding to a memory requirement of ≈ 1 TB.
My basic idea is to have an array holding the current number (starting at 2) for each exponent, starting with 3 and going up to the binary log of the limit. At each step I loop through the exponent array, finding the one which yields the smallest power (finding either pow(base, exponent) or more likely exponent * log(base), probably memoizing these values). At that point call the 'output' function, which will actually do calculations with the number but of course you don't need to worry about that.
Of course because of the range of the numbers involved, bignums must be used -- built into the language, in a library, or self-rolled. Relevant code or code snippets would be appreciated: I feel that this task is similar to some classic problems (e.g., Hamming's problem of generating numbers that are of the form 2x3y5z) and can be solved efficiently. I'm fairly language-agnostic here: all I'll need for my 'output' function are arrays, subtraction, bignum-word comparison, and a bignum integer square root function.

Your example is missing 64=4^3, and 729=9^3.
You want the set of all { n^m } traversed in numerical order, m odd, n integral and n > 1. We know that (for n > 1) that increasing either n or m will increase this value, but short of calculation we can't compare much else.
There are two obvious "dual" ways to do this: keep track of the highest base n you consider, and for all bases less than that, the next exponent m to consider. Then pick the smallest one, and compare it to n^3. Or, the other way around -- keep track of the highest exponent m, and for each exponent smaller than that, keep track of the highest base used, and find the smallest one, and compare it to adding 2^m.
To make keeping track of these numbers efficiently, you'll want to keep them in a priority queue. Now, you still want to minimize the number of entries in the priority queue at a time, so we'll want to figure out which of these two methods does better job of this. It turns out that much higher n values are required to make it to a given point. At number k, the largest value of m seen will be log_2 of k, whereas the largest value of n seen will be k^(1/3).
So, we have a priority queue with elements (v, n, m), where the value v=n^m.
add_priority_queue(2^3, 2, 3)
for m in 5, 7, ....
v = 2^m
while value(peek(queue)) <= v:
(v1, n1, m1) = pop(queue)
if v1 != v print v1
add_priority_queue((n1+1)^m1, n1+1, m1)
add_priority_queue(2^m, 2, m)
Note that we need to check for v1 = v: we can have 2^9 = 512 = 8^3, and only one should be printed out, right?
A Haskell implementation, with a random priority queue grabbed off of hackage.
import Data.MeldableHeap
dropMin q = maybe empty snd (extractMin q)
numbers = generate_values (insert (2^3, 2, 3) empty) 5
generate_values q m = case findMin q of
Nothing -> []
Just (v1, n1, m1) -> case compare v1 (2^m) of
EQ -> generate_values (insert ((n1+1)^m1, n1+1, m1) (dropMin q)) m
LT -> v1 : generate_values (insert ((n1+1)^m1, n1+1, m1) (dropMin q)) m
GT -> 2^m : generate_values (insert (3^m, 3, m) q) (m + 2)
main = sequence_ (map print numbers)
I have a run currently at 177403008736354688547625 (that's 23 digits) and 1.3 GB plaintext output, after 8 minutes

deque numbers // stores a list of tuples - base number, and current odd power value - sorted by the current odd power value
for i = 2 .. infinity
numbers.push_back (i,i^3) // has to be the highest possible number so far
while numbers.peek_front[1] == i // front always has the lowest next value
print i
node = numbers.pop_front
node[1]=node[1]*(node[0]^2)
// put the node back into the numbers deque sorted by the second value in it - will end up being somewhere in the middle
at 2, numbers will be [2,8]
at 3, numbers will be [2,9], [3, 27]
...
at 8, numbers will be [2,8], [3,27].....[8,8^3]
You'll take off the first node, print it out, then put it back in the middle of numbers with the values [2,32]
I think this will work and has a reasonable memory usage.
There's a special case for 1, since 1^N never changes. This will also print out duplicate values for numbers - 256 for instance - and there are fairly simple ways to slightly alter the algorithm to remove those.
This solution is constant time for checking each number, but requires quite a bit of ram.

Consider k lists for numbers 2 .. k+1 numbers. Each list i represents the powers of number i+1. Since each list is a sorted use k-way merging with min heap to achieve what you need.
Min-heap is constructed with first indices of lists as key and after minimum is extracted we remove first element making second element as key and rearrange the heap to get next minimum.
This procedure is repeated till we get all numbers.

Related

Sample number with equal probability which is not part of a set

I have a number n and a set of numbers S ∈ [1..n]* with size s (which is substantially smaller than n). I want to sample a number k ∈ [1..n] with equal probability, but the number is not allowed to be in the set S.
I am trying to solve the problem in at worst O(log n + s). I am not sure whether it's possible.
A naive approach is creating an array of numbers from 1 to n excluding all numbers in S and then pick one array element. This will run in O(n) and is not an option.
Another approach may be just generating random numbers ∈[1..n] and rejecting them if they are contained in S. This has no theoretical bound as any number could be sampled multiple times even if it is in the set. But on average this might be a practical solution if s is substantially smaller than n.
Say s is sorted. Generate a random number between 1 and n-s, call it k. We've chosen the k'th element of {1,...,n} - s. Now we need to find it.
Use binary search on s to find the count of the elements of s <= k. This takes O(log |s|). Add this to k. In doing so, we may have passed or arrived at additional elements of s. We can adjust for this by incrementing our answer for each such element that we pass, which we find by checking the next larger element of s from the point we found in our binary search.
E.g., n = 100, s = {1,4,5,22}, and our random number is 3. So our approach should return the third element of [2,3,6,7,...,21,23,24,...,100] which is 6. Binary search finds that 1 element is at most 3, so we increment to 4. Now we compare to the next larger element of s which is 4 so increment to 5. Repeating this finds 5 in so we increment to 6. We check s once more, see that 6 isn't in it, so we stop.
E.g., n = 100, s = {1,4,5,22}, and our random number is 4. So our approach should return the fourth element of [2,3,6,7,...,21,23,24,...,100] which is 7. Binary search finds that 2 elements are at most 4, so we increment to 6. Now we compare to the next larger element of s which is 5 so increment to 7. We check s once more, see that the next number is > 7, so we stop.
If we assume that "s is substantially smaller than n" means |s| <= log(n), then we will increment at most log(n) times, and in any case at most s times.
If s is not sorted then we can do the following. Create an array of bits of size s. Generate k. Parse s and do two things: 1) count the number of elements < k, call this r. At the same time, set the i'th bit to 1 if k+i is in s (0 indexed so if k is in s then the first bit is set).
Now, increment k a number of times equal to r plus the number of set bits is the array with an index <= the number of times incremented.
E.g., n = 100, s = {1,4,5,22}, and our random number is 4. So our approach should return the fourth element of [2,3,6,7,...,21,23,24,...,100] which is 7. We parse s and 1) note that 1 element is below 4 (r=1), and 2) set our array to [1, 1, 0, 0]. We increment once for r=1 and an additional two times for the two set bits, ending up at 7.
This is O(s) time, O(s) space.
This is an O(1) solution with O(s) initial setup that works by mapping each non-allowed number > s to an allowed number <= s.
Let S be the set of non-allowed values, S(i), where i = [1 .. s] and s = |S|.
Here's a two part algorithm. The first part constructs a hash table based only on S in O(s) time, the second part finds the random value k ∈ {1..n}, k ∉ S in O(1) time, assuming we can generate a uniform random number in a contiguous range in constant time. The hash table can be reused for new random values and also for new n (assuming S ⊂ { 1 .. n } still holds of course).
To construct the hash, H. First set j = 1. Then iterate over S(i), the elements of S. They do not need to be sorted. If S(i) > s, add the key-value pair (S(i), j) to the hash table, unless j ∈ S, in which case increment j until it is not. Finally, increment j.
To find a random value k, first generate a uniform random value in the range s + 1 to n, inclusive. If k is a key in H, then k = H(k). I.e., we do at most one hash lookup to insure k is not in S.
Python code to generate the hash:
def substitute(S):
H = dict()
j = 1
for s in S:
if s > len(S):
while j in S: j += 1
H[s] = j
j += 1
return H
For the actual implementation to be O(s), one might need to convert S into something like a frozenset to insure the test for membership is O(1) and also move the len(S) loop invariant out of the loop. Assuming the j in S test and the insertion into the hash (H[s] = j) are constant time, this should have complexity O(s).
The generation of a random value is simply:
def myrand(n, s, H):
k = random.randint(s + 1, n)
return (H[k] if k in H else k)
If one is only interested in a single random value per S, then the algorithm can be optimized to improve the common case, while the worst case remains the same. This still requires S be in a hash table that allows for a constant time "element of" test.
def rand_not_in(n, S):
k = random.randint(len(S) + 1, n);
if k not in S: return k
j = 1
for s in S:
if s > len(S):
while j in S: j += 1
if s == k: return j
j += 1
Optimizations are: Only generate the mapping if the random value is in S. Don't save the mapping to a hash table. Short-circuit the mapping generation when the random value is found.
Actually, the rejection method seems like the practical approach.
Generate a number in 1...n and check whether it is forbidden; regenerate until the generated number is not forbidden.
The probability of a single rejection is p = s/n.
Thus the expected number of random number generations is 1 + p + p^2 + p^3 + ... which is 1/(1-p), which in turn is equal to n/(n-s).
Now, if s is much less than n, or even more up to s = n/2, this expected number is at most 2.
It would take s almost equal to n to make it infeasible in practice.
Multiply the expected time by log s if you use a tree-set to check whether the number is in the set, or by just 1 (expected value again) if it is a hash-set. So the average time is O(1) or O(log s) depending on the set implementation. There is also O(s) memory for storing the set, but unless the set is given in some special way, implicitly and concisely, I don't see how it can be avoided.
(Edit: As per comments, you do this only once for a given set.
If, additionally, we are out of luck, and the set is given as a plain array or list, not some fancier data structure, we get O(s) expected time with this approach, which still fits into the O(log n + s) requirement.)
If attacks against the unbounded algorithm are a concern (and only if they truly are), the method can include a fall-back algorithm for the cases when a certain fixed number of iterations didn't provide the answer.
Similarly to how IntroSort is QuickSort but falls back to HeapSort if the recursion depth gets too high (which is almost certainly a result of an attack resulting in quadratic QuickSort behavior).
Find all numbers that are in a forbidden set and less or equal then n-s. Call it array A.
Find all numbers that are not in a forbidden set and greater then n-s. Call it array B. It may be done in O(s) if set is sorted.
Note that lengths of A and B are equal, and create mapping map[A[i]] = B[i]
Generate number t up to n-s. If there is map[t] return it, otherwise return t
It will work in O(s) insertions to a map + 1 lookup which is either O(s) in average or O(s log s)

Place "sum" and "multiply" operators between the elements of a given list of integers so that the expression results in a specified value

I was given a tricky question.
Given:
A = [a1,a2,...an] (list of positive integers with length "n")
r (positive integer)
Find a list of { *, + } operators
O = [o1,o2,...on-1]
so that if we placed those operators between the elements of "A", the resulting expression would evaluate to "r". Only one solution is required.
So for example if
A = [1,2,3,4]
r = 14
then
O = [*, +, *]
I've implemented a simple recursive solution with some optimisation, but of course it's exponential O(2^n) time, so for an input with length 40, it works for ages.
I wanted to ask if any of you know a sub-exponential solution for this?
Update
Elements of A are between 0-10000,
r can be arbitrarily big
Let A and B be positive integers. Then A + B ≤ A × B + 1.
This little fact can be used to construct a very efficient algorithm.
Let's define a graph. The graph nodes correspond to operations lists, for example, [+, ×, +, +, ×]. There is an edge from graph node X to graph node Y if the Y can be obtained by changing a single + to a × in X. The graph has a source at the node corresponding to [+, +, ..., +].
Now perform a breadth-first search from the source node, constructing the graph as you go. When expanding a node [+, ×, +, +, ×], for example, you (optionally construct then) connect to the nodes [×, ×, +, +, ×], [+, ×, ×, +, ×], and [+, ×, +, ×, ×]. Do not expand to a node if the result of evaluating it is greater than r + k(O), where k(O) is the number of +'s in the operation list O. This is because of the "+ 1" in the fact at the beginning of the answer - consider the case of a = [1, 1, 1, 1, 1], r = 1.
This approach uses O(n 2n) time and O(2n) space (where both are potentially very-loose worst case bounds). This is still an exponential algorithm, however I think you will find it performs very reasonably for non-sinister inputs. (I suspect this problem is NP-complete, which is why I am happy with this "non-sinister inputs" escape clause.)
Here's an O(rn^2)-time, O(rn)-space DP approach. If r << 2^n then this will have better worst-case behaviour than exponential-time branch-and-bound approaches, though even then the latter may still be faster on many instances. This is pseudo-polynomial time, because it takes time proportional to the value of part of its input (r), not its size (which would be log2(r)). Specifically it needs rn bits of memory, so it should give answers in a few seconds for up to around rn < 1,000,000,000 and n < 1000 (e.g. n = 100, r = 10,000,000).
The key observation is that any formula involving all n numbers has a final term that consists of some number i of factors, where 1 <= i <= n. That is, any formula must be in one of the following n cases:
(a formula on the first n-1 terms) + a[n]
(a formula on the first n-2 terms) + a[n-1] * a[n]
(a formula on the first n-3 terms) + a[n-2] * a[n-1] * a[n]
...
a[1] * a[2] * ... * a[n]
Let's call the "prefix" of a[] consisting of the first i numbers P[i]. If we record, for each 0 <= i <= n-1, the complete set of values <= r that can be reached by some formula on P[i], then based on the above, we can quite easily compute the complete set of values <= r that can be reached by P[n]. Specifically, let X[i][j] be a true or false value that indicates whether the prefix P[i] can achieve the value j. (X[][] could be stored as an array of n size-(r+1) bitmaps.) Then what we want to do is compute X[n][r], which will be true if r can be reached by some formula on a[], and false otherwise. (X[n][r] isn't quite the full answer yet, but it can be used to get the answer.)
X[1][a[1]] = true. X[1][j] = false for all other j. For any 2 <= i <= n and 0 <= j <= r, we can compute X[i][j] using
X[i][j] = X[i - 1][j - a[i]] ||
X[i - 2][j - a[i-1]*a[i]] ||
X[i - 3][j - a[i-2]*a[i-1]*a[i]] ||
... ||
X[1][j - a[2]*a[3]*...*a[i]] ||
(a[1]*a[2]*...*a[i] == j)
Note that the last line is an equality test that compares the product of all i numbers in P[i] to j, and returns true or false. There are i <= n "terms" (rows) in the expression for X[i][j], each of which can be computed in constant time (note in particular that the multiplications can be built up in constant time per row), so computing a single value X[i][j] can be done in O(n) time. To find X[n][r], we need to calculate X[i][j] for every 1 <= i <= n and every 0 <= j <= r, so there is O(rn^2) overall work to do. (Strictly speaking we may not need to compute all of these table entries if we use memoization instead of a bottom-up approach, but many inputs will require us to compute a large fraction of them anyway, so it's likely that the latter is faster by a small constant factor. Also a memoization approach requires keeping an "already processed" flag for each DP cell -- which doubles the memory usage when each cell is just 1 bit!)
Reconstructing a solution
If X[n][r] is true, then the problem has a solution (satisfying formula), and we can reconstruct one in O(n^2) time by tracing back through the DP table, starting from X[n][r], at each location looking for any term that enabled the current location to assume the value "true" -- that is, any true term. (We could do this reconstruction step faster by storing more than a single bit per (i, j) combination -- but since r is allowed to be "arbitrarily big", and this faster reconstruction won't improve the overall time complexity, it probably makes more sense to go with the approach that uses the fewest bits per DP table entry.) All satisfying solutions can be reconstructed this way, by backtracking through all true terms instead of just picking any one -- but there may be an exponential number of them.
Speedups
There are two ways that calculation of an individual X[i][j] value can be sped up. First, because all the terms are combined with ||, we can stop as soon as the result becomes true, since no later term can make it false again. Second, if there is no zero anywhere to the left of i, we can stop as soon as the product of the final numbers becomes larger than r, since there's no way for that product to be decreased again.
When there are no zeroes in a[], that second optimisation is likely to be very important in practice: it has the potential to make the inner loop much smaller than the full i-1 iterations. In fact if a[] contains no zeroes, and its average value is v, then after k terms have been computed for a particular X[i][j] value the product will be around v^k -- so on average, the number of inner loop iterations (terms) needed drops from n to log_v(r) = log(r)/log(v). That might be much smaller than n, in which case the average time complexity for this model drops to O(rn*log(r)/log(v)).
[EDIT: We actually can save multiplications with the following optimisation :)]
8/32/64 X[i][j]s at a time: X[i][j] is independent of X[i][k] for k != j, so if we are using bitsets to store these values, we can calculate 8, 32 or 64 of them (or maybe more, with SSE2 etc.) in parallel using simple bitwise OR operations. That is, we can calculate the first term of X[i][j], X[i][j+1], ..., X[i][j+31] in parallel, OR them into the results, then calculate their second terms in parallel and OR them in, etc. We still need to perform the same number of subtractions this way, but the products are all the same, so we can reduce the number of multiplications by a factor of 8/32/64 -- as well as, of course, the number of memory accesses. OTOH, this makes the first optimisation from the previous paragraph harder to accomplish -- you have to wait until an entire block of 8/32/64 bits have become true before you can stop iterating.
Zeroes: Zeroes in a[] may allow us to stop early. Specifically, if we have just computed X[i][r] for some i < n and found it to be true, and there is a zero anywhere to the right of position i in a[], then we can stop: we already have a formula on the first i numbers that evaluates to r, and we can use that zero to "kill off" all numbers to the right of position i by creating one big product term that includes all of them.
Ones: An interesting property of any a[] entry containing the value 1 is that it can be moved to any other position in a[] without affecting whether or not there is a solution. This is because every satisfying formula either has a * on at least one side of this 1, in which case it multiplies some other term and has no effect there, and would likewise have no effect anywhere else; or it has a + on both sides (imagine extra + signs before the first position and after the last), in which case it might as well be added in anywhere.
So, we can safely shunt all 1 values to the end of a[] before doing anything else. The point of doing this is that now we don't have to evaluate these rows of X[][] at all, because they only influence the outcome in a very simple way. Suppose there are m < n ones in a[], which we have moved to the end. Then after computing the m+1 values X[n-m][r-m], X[n-m][r-m+1], X[n-m][r-m+2], ..., X[n-m][r], we already know what X[n][r] must be: if any of them are true, then X[n][r] must be true, otherwise (if they are all false) it must be false. This is because the final m ones can add anywhere from 0 up to m to a formula on the first n-m values. (But if a[] consists entirely of 1s, then at least 1 must be "added" -- they can't all multiply some other term.)
Here is another approach that might be helpful. It is sometimes known as a "meet-in-the-middle" algorithm and runs in O(n * 2^(n/2)). The basic idea is this. Suppose n = 40 and you know that the middle slot is a +. Then, you can brute force all N := 2^20 possibilities for each side. Let A be a length N array storing the possible values of the left side, and similarly let B be a length N array storing the values for the right side.
Then, after sorting A and B, it is not hard to efficiently check for whether any two of them sum to r (e.g. for each value in A, do a binary search on B, or you can even do it in linear time if both arrays are sorted). This part takes O(N * log N) = O(n * 2^(n/2)) time.
Now, this was all assuming the middle slot is a +. If not, then it has to be a *, and you can combine the middle two elements into one (their product), reducing the problem to n = 39. Then you try the same thing, and so on. If you analyze it carefully, you should get O(n * 2^(n/2)) as the asymptotic complexity, since actually the largest term dominates.
You need to do some bookkeeping to actually recover the +'s and *'s, which I have left out to simplify the explanation.

Given a permutation's lexicographic number, is it possible to get any item in it in O(1)

I want to know whether the task explained below is even theoretically possible, and if so how I could do it.
You are given a space of N elements (i.e. all numbers between 0 and N-1.) Let's look at the space of all permutations on that space, and call it S. The ith member of S, which can be marked S[i], is the permutation with the lexicographic number i.
For example, if N is 3, then S is this list of permutations:
S[0]: 0, 1, 2
S[1]: 0, 2, 1
S[2]: 1, 0, 2
S[3]: 1, 2, 0
S[4]: 2, 0, 1
S[5]: 2, 1, 0
(Of course, when looking at a big N, this space becomes very large, N! to be exact.)
Now, I already know how to get the permutation by its index number i, and I already know how to do the reverse (get the lexicographic number of a given permutation.) But I want something better.
Some permutations can be huge by themselves. For example, if you're looking at N=10^20. (The size of S would be (10^20)! which I believe is the biggest number I ever mentioned in a Stack Overflow question :)
If you're looking at just a random permutation on that space, it would be so big that you wouldn't be able to store the whole thing on your harddrive, let alone calculate each one of the items by lexicographic number. What I want is to be able to do item access on that permutation, and also get the index of each item. That is, given N and i to specify a permutation, have one function that takes an index number and find the number that resides in that index, and another function that takes a number and finds in which index it resides. I want to do that in O(1), so I don't need to store or iterate over each member in the permutation.
Crazy, you say? Impossible? That may be. But consider this: A block cipher, like AES, is essentially a permutation, and it almost accomplishes the tasks I outlined above. AES has a block size of 16 bytes, meaning that N is 256^16 which is around 10^38. (The size of S, not that it matters, is a staggering (256^16)!, or around 10^85070591730234615865843651857942052838, which beats my recent record for "biggest number mentioned on Stack Overflow" :)
Each AES encryption key specifies a single permutation on N=256^16. That permutation couldn't be stored whole on your computer, because it has more members than there are atoms in the solar system. But, it allows you item access. By encrypting data using AES, you're looking at the data block by block, and for each block (member of range(N)) you output the encrypted block, which the member of range(N) that is in the index number of the original block in the permutation. And when you're decrypting, you're doing the reverse (Finding the index number of a block.) I believe this is done in O(1), I'm not sure but in any case it's very fast.
The problem with using AES or any other block cipher is that it limits you to very specific N, and it probably only captures a tiny fraction of the possible permutations, while I want to be able to use any N I like, and do item access on any permutation S[i] that I like.
Is it possible to get O(1) item access on a permutation, given size N and permutation number i? If so, how?
(If I'm lucky enough to get code answers here, I'd appreciate if they'll be in Python.)
UPDATE:
Some people pointed out the sad fact that the permutation number itself would be so huge, that just reading the number would make the task non-feasible. Then, I'd like to revise my question: Given access to the factoradic representation of a permutation's lexicographic number, is it possible to get any item in the permutation in O(as small as possible)?
The secret to doing this is to "count in base factorial".
In the same way that 134 = 1*10^2+3*10 + 4, 134 = 5! + 2 * 3! + 2! => 10210 in factorial notation (include 1!, exclude 0!). If you want to represent N!, you will then need N^2 base ten digits. (For each factorial digit N, the maximum number it can hold is N). Up to a bit of confusion about what you call 0, this factorial representation is exactly the lexicographic number of a permutation.
You can use this insight to solve Euler Problem 24 by hand. So I will do that here, and you will see how to solve your problem. We want the millionth permutation of 0-9. In factorial representation we take 1000000 => 26625122. Now to convert that to the permutation, I take my digits 0,1,2,3,4,5,6,7,8,9, and The first number is 2, which is the third (it could be 0), so I select 2 as the first digit, then I have a new list 0,1,3,4,5,6,7,8,9 and I take the seventh number which is 8 etc, and I get 2783915604.
However, this assumes that you start your lexicographic ordering at 0, if you actually start it at one, you have to subtract 1 from it, which gives 2783915460. Which is indeed the millionth permutation of the numbers 0-9.
You can obviously reverse this procedure, and hence convert backwards and forwards easily between the lexiographic number and the permutation that it represents.
I am not entirely clear what it is that you want to do here, but understanding the above procedure should help. For example, its clear that the lexiographic number represents an ordering which could be used as the key in a hashtable. And you can order numbers by comparing digits left to right so once you have inserted a number you never have to work outs it factorial.
Your question is a bit moot, because your input size for an arbitrary permutation index has size log(N!) (assuming you want to represent all possible permutations) which is Theta(N log N), so if N is really large then just reading the input of the permutation index would take too long, certainly much longer than O(1). It may be possible to store the permutation index in such a way that if you already had it stored, then you could access elements in O(1) time. But probably any such method would be equivalent to just storing the permutation in contiguous memory (which also has Theta(N log N) size), and if you store the permutation directly in memory then the question becomes trivial assuming you can do O(1) memory access. (However you still need to account for the size of the bit encoding of the element, which is O(log N)).
In the spirit of your encryption analogy, perhaps you should specify a small SUBSET of permutations according to some property, and ask if O(1) or O(log N) element access is possible for that small subset.
Edit:
I misunderstood the question, but it was not in waste. My algorithms let me understand: the factoradic representation of a permutation's lexicographic number is almost the same as the permutation itself. In fact the first digit of the factoradic representation is the same as the first element of the corresponding permutation (assuming your space consists of numbers from 0 to N-1). Knowing this there is not really a point in storing the index rather than the permutation itself . To see how to convert the lexicographic number into a permutation, read below.
See also this wikipedia link about Lehmer code.
Original post:
In the S space there are N elements that can fill the first slot, meaning that there are (N-1)! elements that start with 0. So i/(N-1)! is the first element (lets call it 'a'). The subset of S that starts with 0 consists of (N-1)! elements. These are the possible permutations of the set N{a}. Now you can get the second element: its the i(%((N-1)!)/(N-2)!). Repeat the process and you got the permutation.
Reverse is just as simple. Start with i=0. Get the 2nd last element of the permutation. Make a set of the last two elements, and find the element's position in it (its either the 0th element or the 1st), lets call this position j. Then i+=j*2!. Repeat the process (you can start with the last element too, but it will always be the 0th element of the possibilities).
Java-ish pesudo code:
find_by_index(List N, int i){
String str = "";
for(int l = N.length-1; i >= 0; i--){
int pos = i/fact(l);
str += N.get(pos);
N.remove(pos);
i %= fact(l);
}
return str;
}
find_index(String str){
OrderedList N;
int i = 0;
for(int l = str.length-1; l >= 0; l--){
String item = str.charAt(l);
int pos = N.add(item);
i += pos*fact(str.length-l)
}
return i;
}
find_by_index should run in O(n) assuming that N is pre ordered, while find_index is O(n*log(n)) (where n is the size of the N space)
After some research in Wikipedia, I desgined this algorithm:
def getPick(fact_num_list):
"""fact_num_list should be a list with the factorial number representation,
getPick will return a tuple"""
result = [] #Desired pick
#This will hold all the numbers pickable; not actually a set, but a list
#instead
inputset = range(len(fact_num_list))
for fnl in fact_num_list:
result.append(inputset[fnl])
del inputset[fnl] #Make sure we can't pick the number again
return tuple(result)
Obviously, this won't reach O(1) due the factor we need to "pick" every number. Due we do a for loop and thus, assuming all operations are O(1), getPick will run in O(n).
If we need to convert from base 10 to factorial base, this is an aux function:
import math
def base10_baseFactorial(number):
"""Converts a base10 number into a factorial base number. Output is a list
for better handle of units over 36! (after using all 0-9 and A-Z)"""
loop = 1
#Make sure n! <= number
while math.factorial(loop) <= number:
loop += 1
result = []
if not math.factorial(loop) == number:
loop -= 1 #Prevent dividing over a smaller number than denominator
while loop > 0:
denominator = math.factorial(loop)
number, rem = divmod(number, denominator)
result.append(rem)
loop -= 1
result.append(0) #Don't forget to divide to 0! as well!
return result
Again, this will run in O(n) due to the whiles.
Summing all, the best time we can find is O(n).
PS: I'm not a native English speaker, so spelling and phrasing errors may appear. Apologies in advance, and let me know if you can't get around something.
All correct algorithms for accessing the kth item of a permutation stored in factoradic form must read the first k digits. This is because, regardless of the values of the other digits among the first k, it makes a difference whether an unread digit is a 0 or takes on its maximum value. That this is the case can be seen by tracing the canonical correct decoding program in two parallel executions.
For example, if we want to decode the third digit of the permutation 1?0, then for 100, that digit is 0, and for 110, that digit is 2.

Finding even numbers in an array without using feedback

I saw this post: Finding even numbers in an array and I was thinking about how you could do it without feedback. Here's what I mean.
Given an array of length n containing at most e even numbers and a
function isEven that returns true if the input is even and false
otherwise, write a function that prints all the even numbers in the
array using the fewest number of calls to isEven.
The answer on the post was to use a binary search, which is neat since it doesn't mean the array has to be in order. The number of times you have to check if a number is even is e log n instead if n because you do a binary search (log n) to find one even number each time (e times).
But that idea means that you divide the array in half, test for evenness, then decide which half to keep based on the result.
My question is whether or not you can beat n calls on a fixed testing scheme where you check all the numbers you want for evenness without knowing the outcome, and then figure out where the even numbers are after you've done all the tests based on the results. So I guess it's no-feedback or blind or some term like that.
I was thinking about this for a while and couldn't come up with anything. The binary search idea doesn't work at all with this constraint, but maybe something else does? Even getting down to n/2 calls instead of n (yes, I know they are the same big-O) would be good.
The technical term for "no-feedback or blind" is "non-adaptive". O(e log n) calls still suffice, but the algorithm is rather more involved.
Instead of testing the evenness of products, we're going to test the evenness of sums. Let E ≠ F be distinct subsets of {1, …, n}. If we have one array x1, …, xn with even numbers at positions E and another array y1, …, yn with even numbers at positions F, how many subsets J of {1, …, n} satisfy
(∑i in J xi) mod 2 ≠ (∑i in J yi) mod 2?
The answer is 2n-1. Let i be an index such that xi mod 2 ≠ yi mod 2. Let S be a subset of {1, …, i - 1, i + 1, … n}. Either J = S is a solution or J = S union {i} is a solution, but not both.
For every possible outcome E, we need to make calls that eliminate every other possible outcome F. Suppose we make 2e log n calls at random. For each pair E ≠ F, the probability that we still cannot distinguish E from F is (2n-1/2n)2e log n = n-2e, because there are 2n possible calls and only 2n-1 fail to distinguish. There are at most ne + 1 choices of E and thus at most (ne + 1)ne/2 pairs. By a union bound, the probability that there exists some indistinguishable pair is at most n-2e(ne + 1)ne/2 < 1 (assuming we're looking at an interesting case where e ≥ 1 and n ≥ 2), so there exists a sequence of 2e log n calls that does the job.
Note that, while I've used randomness to show that a good sequence of calls exists, the resulting algorithm is deterministic (and, of course, non-adaptive, because we chose that sequence without knowledge of the outcomes).
You can use the Chinese Remainder Theorem to do this. I'm going to change your notation a bit.
Suppose you have N numbers of which at most E are even. Choose a sequence of distinct prime powers q1,q2,...,qk such that their product is at least N^E, i.e.
qi = pi^ei
where pi is prime and ei > 0 is an integer and
q1 * q2 * ... * qk >= N^E
Now make a bunch of 0-1 matrices. Let Mi be the qi x N matrix where the entry in row r and column c has a 1 if c = r mod qi and a 0 otherwise. For example, if qi = 3^2, then row 2 has ones in columns 2, 11, 20, ... 2 + 9j and 0 elsewhere.
Now stack these matrices vertically to get a Q x N matrix M, where Q = q1 + q2 + ... + qk. The rows of M tell you which numbers to multiply together (the nonzero positions). This gives a total of Q products that you need to test for evenness. Call each row a "trial", and say that a "trial involves j" if the jth column of that row is nonempty. The theorem you need is the following:
THEOREM: The number in position j is even if and only if all trials involving j are even.
So you do a total of Q trials and then look at the results. If you choose the prime powers intelligently, then Q should be significantly smaller than N. There are asymptotic results that show you can always get Q on the order of
(2E log N)^2 / 2log(2E log N)
This theorem is actually a corollary of the Chinese Remainder Theorem. The only place that I've seen this used is in Combinatorial Group Testing. Apparently the problem originally arose when testing soldiers coming back from WWII for syphilis.
The problem you are facing is a form of group testing, type of a problem with the objective of reducing the cost of identifying certain elements of a set (up to d elements of a set of N elements).
As you've already stated, there are two basic principles via which the testing may be carried out:
Non-adaptive Group Testing, where all the tests to be performed are decided a priori.
Adaptive Group Testing, where we perform several tests, basing each test on the outcome of previous tests. Obviously, adaptive testing has a potential to reduce the cost, compared to non-adaptive testing.
Theoretical bounds for both principles have been studied, and are available in this Wiki article, or this paper.
For adaptive testing, the upper bound is O(d*log(N)) (as already described in this answer).
For non-adaptive testing, it can be shown that the upper bound is O(d*d/log(d)*log(N)), which is obviously larger than the upper bound for adaptive testing by a factor of d/log(d).
This upper bound for non-adaptive testing comes from an algorithm which uses disjunct matrices: matrices of dimension T x N ("number of tests" x "number of elements"), where each item can be either true (if an element was included in a test), or false (if it wasn't), with a property that any subset of d columns must differ from all other columns by at least a single row (test inclusion). This allows linear time of decoding (there are also "d-separable" matrices where fewer test are needed, but the time complexity for their decoding is exponential and not computationaly feasible).
Conclusion:
My question is whether or not you can beat n calls on a fixed testing scheme [...]
For such a scheme and a sufficiently large value of N, a disjunct matrix can be constructed which would have less than K * [d*d/log(d)*log(N)] rows. So, for large values of N, yes, you can beat it.
The underlying question (challenge) is kind of silly. If the binary search answer is acceptable (where it sums sub arrays and sends them to IsEven) then I can think of a way to do it with E or less calls to IsEven (assuming the numbers are integers of course).
JavaScript to demonstrate
// sort the array by only the first bit of the number
A.sort(function(x,y) { return (x & 1) - (y & 1); });
// all of the evens will be at the beginning
for(var i=0; i < E && i < A.length; i++) {
if(IsEven(A[i]))
Print(A[i]);
else
break;
}
Not exactly a solution, but just few thoughts.
It is easy to see that if a solution exists for array length n that takes less than n tests, then for any array length m > n it is easy to see that there is always a solution with less than m tests. So, if you have a solution for n = 2 or 3 or 4, then the problem is solved.
You can split the array into pairs of numbers and for each pair: if the sum is odd, then exactly one of them is even, otherwise if one of the numbers is even, then both of them are even. This way for each pair it takes either one or two tests. Best case:n/2 tests, worse case:n tests, if even and odd numbers are chosen with equal probability, then: 3n/4 tests.
My hunch is there is no solution with less than n tests. Not sure how to prove it.
UPDATE: The second solution can be extended in the following way.
Check if the sum of two numbers is even. If odd, then exactly one of them is even. Otherwise label the set as "homogeneous set of size 2". Take two "homogenous set"s of same size n. Pick one number from each set and check if their sum is even. If it is even, combine these two sets to a "homogeneous set of size 2n". Otherwise, it implies that one of those sets purely consists of even numbers and the other one purely odd numbers.
Best case:n/2 tests. Average case: 3*n/2. Worst case is still n. Worst case exists only when all the numbers are even or all the numbers are odd.
If we can add and multiply array elements, then we can compute every Boolean function (up to complementation) on the low-order bits. Simulate a circuit that encodes the positions of the even numbers as a number from 0 to nC0 + nC1 + ... + nCe - 1 represented in binary and use calls to isEven to read off the bits.
Number of calls used: within 1 of the information-theoretic optimum.
See also fully homomorphic encryption.

Greatest GCD between some numbers

We've got some nonnegative numbers. We want to find the pair with maximum gcd. actually this maximum is more important than the pair!
For example if we have:
2 4 5 15
gcd(2,4)=2
gcd(2,5)=1
gcd(2,15)=1
gcd(4,5)=1
gcd(4,15)=1
gcd(5,15)=5
The answer is 5.
You can use the Euclidean Algorithm to find the GCD of two numbers.
while (b != 0)
{
int m = a % b;
a = b;
b = m;
}
return a;
If you want an alternative to the obvious algorithm, then assuming your numbers are in a bounded range, and you have plenty of memory, you can beat O(N^2) time, N being the number of values:
Create an array of a small integer type, indexes 1 to the max input. O(1)
For each value, increment the count of every element of the index which is a factor of the number (make sure you don't wraparound). O(N).
Starting at the end of the array, scan back until you find a value >= 2. O(1)
That tells you the max gcd, but doesn't tell you which pair produced it. For your example input, the computed array looks like this:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
4 2 1 1 2 0 0 0 0 0 0 0 0 0 1
I don't know whether this is actually any faster for the inputs you have to handle. The constant factors involved are large: the bound on your values and the time to factorise a value within that bound.
You don't have to factorise each value - you could use memoisation and/or a pregenerated list of primes. Which gives me the idea that if you are memoising the factorisation, you don't need the array:
Create an empty set of int, and a best-so-far value 1.
For each input integer:
if it's less than or equal to best-so-far, continue.
check whether it's in the set. If so, best-so-far = max(best-so-far, this-value), continue. If not:
add it to the set
repeat for all of its factors (larger than best-so-far).
Add/lookup in a set could be O(log N), although it depends what data structure you use. Each value has O(f(k)) factors, where k is the max value and I can't remember what the function f is...
The reason that you're finished with a value as soon as you encounter it in the set is that you've found a number which is a common factor of two input values. If you keep factorising, you'll only find smaller such numbers, which are not interesting.
I'm not quite sure what the best way is to repeat for the larger factors. I think in practice you might have to strike a balance: you don't want to do them quite in decreasing order because it's awkward to generate ordered factors, but you also don't want to actually find all the factors.
Even in the realms of O(N^2), you might be able to beat the use of the Euclidean algorithm:
Fully factorise each number, storing it as a sequence of exponents of primes (so for example 2 is {1}, 4 is {2}, 5 is {0, 0, 1}, 15 is {0, 1, 1}). Then you can calculate gcd(a,b) by taking the min value at each index and multiplying them back out. No idea whether this is faster than Euclid on average, but it might be. Obviously it uses a load more memory.
The optimisations I can think of is
1) start with the two biggest numbers since they are likely to have most prime factors and thus likely to have the most shared prime factors (and thus the highest GCD).
2) When calculating the GCDs of other pairs you can stop your Euclidean algorithm loop if you get below your current greatest GCD.
Off the top of my head I can't think of a way that you can work out the greatest GCD of a pair without trying to work out each pair individually (and optimise a bit as above).
Disclaimer: I've never looked at this problem before and the above is off the top of my head. There may be better ways and I may be wrong. I'm happy to discuss my thoughts in more length if anybody wants. :)
There is no O(n log n) solution to this problem in general. In fact, the worst case is O(n^2) in the number of items in the list. Consider the following set of numbers:
2^20 3^13 5^9 7^2*11^4 7^4*11^3
Only the GCD of the last two is greater than 1, but the only way to know that from looking at the GCDs is to try out every pair and notice that one of them is greater than 1.
So you're stuck with the boring brute-force try-every-pair approach, perhaps with a couple of clever optimizations to avoid doing needless work when you've already found a large GCD (while making sure that you don't miss anything).
With some constraints, e.g the numbers in the array are within a given range, say 1-1e7, it is doable in O(NlogN) / O(MAX * logMAX), where MAX is the maximum possible value in A.
Inspired from the sieve algorithm, and came across it in a Hackerrank Challenge -- there it is done for two arrays. Check their editorial.
find min(A) and max(A) - O(N)
create a binary mask, to mark which elements of A appear in the given range, for O(1) lookup; O(N) to build; O(MAX_RANGE) storage.
for every number a in the range (min(A), max(A)):
for aa = a; aa < max(A); aa += a:
if aa in A, increment a counter for aa, and compare it to current max_gcd, if counter >= 2 (i.e, you have two numbers divisible by aa);
store top two candidates for each GCD candidate.
could also ignore elements which are less than current max_gcd;
Previous answer:
Still O(N^2) -- sort the array; should eliminate some of the unnecessary comparisons;
max_gcd = 1
# assuming you want pairs of distinct elements.
sort(a) # assume in place
for ii = n - 1: -1 : 0 do
if a[ii] <= max_gcd
break
for jj = ii - 1 : -1 :0 do
if a[jj] <= max_gcd
break
current_gcd = GCD(a[ii], a[jj])
if current_gcd > max_gcd:
max_gcd = current_gcd
This should save some unnecessary computation.
There is a solution that would take O(n):
Let our numbers be a_i. First, calculate m=a_0*a_1*a_2*.... For each number a_i, calculate gcd(m/a_i, a_i). The number you are looking for is the maximum of these values.
I haven't proved that this is always true, but in your example, it works:
m=2*4*5*15=600,
max(gcd(m/2,2), gcd(m/4,4), gcd(m/5,5), gcd(m/15,15))=max(2, 2, 5, 5)=5
NOTE: This is not correct. If the number a_i has a factor p_j repeated twice, and if two other numbers also contain this factor, p_j, then you get the incorrect result p_j^2 insted of p_j. For example, for the set 3, 5, 15, 25, you get 25 as the answer instead of 5.
However, you can still use this to quickly filter out numbers. For example, in the above case, once you determine the 25, you can first do the exhaustive search for a_3=25 with gcd(a_3, a_i) to find the real maximum, 5, then filter out gcd(m/a_i, a_i), i!=3 which are less than or equal to 5 (in the example above, this filters out all others).
Added for clarification and justification:
To see why this should work, note that gcd(a_i, a_j) divides gcd(m/a_i, a_i) for all j!=i.
Let's call gcd(m/a_i, a_i) as g_i, and max(gcd(a_i, a_j),j=1..n, j!=i) as r_i. What I say above is g_i=x_i*r_i, and x_i is an integer. It is obvious that r_i <= g_i, so in n gcd operations, we get an upper bound for r_i for all i.
The above claim is not very obvious. Let's examine it a bit deeper to see why it is true: the gcd of a_i and a_j is the product of all prime factors that appear in both a_i and a_j (by definition). Now, multiply a_j with another number, b. The gcd of a_i and b*a_j is either equal to gcd(a_i, a_j), or is a multiple of it, because b*a_j contains all prime factors of a_j, and some more prime factors contributed by b, which may also be included in the factorization of a_i. In fact, gcd(a_i, b*a_j)=gcd(a_i/gcd(a_i, a_j), b)*gcd(a_i, a_j), I think. But I can't see a way to make use of this. :)
Anyhow, in our construction, m/a_i is simply a shortcut to calculate the product of all a_j, where j=1..1, j!=i. As a result, gcd(m/a_i, a_i) contains all gcd(a_i, a_j) as a factor. So, obviously, the maximum of these individual gcd results will divide g_i.
Now, the largest g_i is of particular interest to us: it is either the maximum gcd itself (if x_i is 1), or a good candidate for being one. To do that, we do another n-1 gcd operations, and calculate r_i explicitly. Then, we drop all g_j less than or equal to r_i as candidates. If we don't have any other candidate left, we are done. If not, we pick up the next largest g_k, and calculate r_k. If r_k <= r_i, we drop g_k, and repeat with another g_k'. If r_k > r_i, we filter out remaining g_j <= r_k, and repeat.
I think it is possible to construct a number set that will make this algorithm run in O(n^2) (if we fail to filter out anything), but on random number sets, I think it will quickly get rid of large chunks of candidates.
pseudocode
function getGcdMax(array[])
arrayUB=upperbound(array)
if (arrayUB<1)
error
pointerA=0
pointerB=1
gcdMax=0
do
gcdMax=MAX(gcdMax,gcd(array[pointera],array[pointerb]))
pointerB++
if (pointerB>arrayUB)
pointerA++
pointerB=pointerA+1
until (pointerB>arrayUB)
return gcdMax

Resources