Finding even numbers in an array without using feedback - algorithm

I saw this post: Finding even numbers in an array and I was thinking about how you could do it without feedback. Here's what I mean.
Given an array of length n containing at most e even numbers and a
function isEven that returns true if the input is even and false
otherwise, write a function that prints all the even numbers in the
array using the fewest number of calls to isEven.
The answer on the post was to use a binary search, which is neat since it doesn't mean the array has to be in order. The number of times you have to check if a number is even is e log n instead if n because you do a binary search (log n) to find one even number each time (e times).
But that idea means that you divide the array in half, test for evenness, then decide which half to keep based on the result.
My question is whether or not you can beat n calls on a fixed testing scheme where you check all the numbers you want for evenness without knowing the outcome, and then figure out where the even numbers are after you've done all the tests based on the results. So I guess it's no-feedback or blind or some term like that.
I was thinking about this for a while and couldn't come up with anything. The binary search idea doesn't work at all with this constraint, but maybe something else does? Even getting down to n/2 calls instead of n (yes, I know they are the same big-O) would be good.

The technical term for "no-feedback or blind" is "non-adaptive". O(e log n) calls still suffice, but the algorithm is rather more involved.
Instead of testing the evenness of products, we're going to test the evenness of sums. Let E ≠ F be distinct subsets of {1, …, n}. If we have one array x1, …, xn with even numbers at positions E and another array y1, …, yn with even numbers at positions F, how many subsets J of {1, …, n} satisfy
(∑i in J xi) mod 2 ≠ (∑i in J yi) mod 2?
The answer is 2n-1. Let i be an index such that xi mod 2 ≠ yi mod 2. Let S be a subset of {1, …, i - 1, i + 1, … n}. Either J = S is a solution or J = S union {i} is a solution, but not both.
For every possible outcome E, we need to make calls that eliminate every other possible outcome F. Suppose we make 2e log n calls at random. For each pair E ≠ F, the probability that we still cannot distinguish E from F is (2n-1/2n)2e log n = n-2e, because there are 2n possible calls and only 2n-1 fail to distinguish. There are at most ne + 1 choices of E and thus at most (ne + 1)ne/2 pairs. By a union bound, the probability that there exists some indistinguishable pair is at most n-2e(ne + 1)ne/2 < 1 (assuming we're looking at an interesting case where e ≥ 1 and n ≥ 2), so there exists a sequence of 2e log n calls that does the job.
Note that, while I've used randomness to show that a good sequence of calls exists, the resulting algorithm is deterministic (and, of course, non-adaptive, because we chose that sequence without knowledge of the outcomes).

You can use the Chinese Remainder Theorem to do this. I'm going to change your notation a bit.
Suppose you have N numbers of which at most E are even. Choose a sequence of distinct prime powers q1,q2,...,qk such that their product is at least N^E, i.e.
qi = pi^ei
where pi is prime and ei > 0 is an integer and
q1 * q2 * ... * qk >= N^E
Now make a bunch of 0-1 matrices. Let Mi be the qi x N matrix where the entry in row r and column c has a 1 if c = r mod qi and a 0 otherwise. For example, if qi = 3^2, then row 2 has ones in columns 2, 11, 20, ... 2 + 9j and 0 elsewhere.
Now stack these matrices vertically to get a Q x N matrix M, where Q = q1 + q2 + ... + qk. The rows of M tell you which numbers to multiply together (the nonzero positions). This gives a total of Q products that you need to test for evenness. Call each row a "trial", and say that a "trial involves j" if the jth column of that row is nonempty. The theorem you need is the following:
THEOREM: The number in position j is even if and only if all trials involving j are even.
So you do a total of Q trials and then look at the results. If you choose the prime powers intelligently, then Q should be significantly smaller than N. There are asymptotic results that show you can always get Q on the order of
(2E log N)^2 / 2log(2E log N)
This theorem is actually a corollary of the Chinese Remainder Theorem. The only place that I've seen this used is in Combinatorial Group Testing. Apparently the problem originally arose when testing soldiers coming back from WWII for syphilis.

The problem you are facing is a form of group testing, type of a problem with the objective of reducing the cost of identifying certain elements of a set (up to d elements of a set of N elements).
As you've already stated, there are two basic principles via which the testing may be carried out:
Non-adaptive Group Testing, where all the tests to be performed are decided a priori.
Adaptive Group Testing, where we perform several tests, basing each test on the outcome of previous tests. Obviously, adaptive testing has a potential to reduce the cost, compared to non-adaptive testing.
Theoretical bounds for both principles have been studied, and are available in this Wiki article, or this paper.
For adaptive testing, the upper bound is O(d*log(N)) (as already described in this answer).
For non-adaptive testing, it can be shown that the upper bound is O(d*d/log(d)*log(N)), which is obviously larger than the upper bound for adaptive testing by a factor of d/log(d).
This upper bound for non-adaptive testing comes from an algorithm which uses disjunct matrices: matrices of dimension T x N ("number of tests" x "number of elements"), where each item can be either true (if an element was included in a test), or false (if it wasn't), with a property that any subset of d columns must differ from all other columns by at least a single row (test inclusion). This allows linear time of decoding (there are also "d-separable" matrices where fewer test are needed, but the time complexity for their decoding is exponential and not computationaly feasible).
Conclusion:
My question is whether or not you can beat n calls on a fixed testing scheme [...]
For such a scheme and a sufficiently large value of N, a disjunct matrix can be constructed which would have less than K * [d*d/log(d)*log(N)] rows. So, for large values of N, yes, you can beat it.

The underlying question (challenge) is kind of silly. If the binary search answer is acceptable (where it sums sub arrays and sends them to IsEven) then I can think of a way to do it with E or less calls to IsEven (assuming the numbers are integers of course).
JavaScript to demonstrate
// sort the array by only the first bit of the number
A.sort(function(x,y) { return (x & 1) - (y & 1); });
// all of the evens will be at the beginning
for(var i=0; i < E && i < A.length; i++) {
if(IsEven(A[i]))
Print(A[i]);
else
break;
}

Not exactly a solution, but just few thoughts.
It is easy to see that if a solution exists for array length n that takes less than n tests, then for any array length m > n it is easy to see that there is always a solution with less than m tests. So, if you have a solution for n = 2 or 3 or 4, then the problem is solved.
You can split the array into pairs of numbers and for each pair: if the sum is odd, then exactly one of them is even, otherwise if one of the numbers is even, then both of them are even. This way for each pair it takes either one or two tests. Best case:n/2 tests, worse case:n tests, if even and odd numbers are chosen with equal probability, then: 3n/4 tests.
My hunch is there is no solution with less than n tests. Not sure how to prove it.
UPDATE: The second solution can be extended in the following way.
Check if the sum of two numbers is even. If odd, then exactly one of them is even. Otherwise label the set as "homogeneous set of size 2". Take two "homogenous set"s of same size n. Pick one number from each set and check if their sum is even. If it is even, combine these two sets to a "homogeneous set of size 2n". Otherwise, it implies that one of those sets purely consists of even numbers and the other one purely odd numbers.
Best case:n/2 tests. Average case: 3*n/2. Worst case is still n. Worst case exists only when all the numbers are even or all the numbers are odd.

If we can add and multiply array elements, then we can compute every Boolean function (up to complementation) on the low-order bits. Simulate a circuit that encodes the positions of the even numbers as a number from 0 to nC0 + nC1 + ... + nCe - 1 represented in binary and use calls to isEven to read off the bits.
Number of calls used: within 1 of the information-theoretic optimum.
See also fully homomorphic encryption.

Related

Is this shortcut for modulo by a constant (C) valid? IF (A mod 2^n) > C: { -C}

Looking to do modulo operator, A mod K where...
K is a uint32_t constant, is not a power of two, and I will be using it over and over again.
A is a uint32_t variable, possibly as much as ~2^13 times larger than K.
The ISA does not have single cycle modulo or division instructions. (8-bit micro)
The naive approach seems to coincide with the naive approach to division; repeat subtraction until underflow, then keep the remainder. This would obviously have fairly bad worst case performance, but would work for any A and K.
A known fast approach which works well for a K that is some power of two, is to logical AND with that power of two -1.
From Wikipedia...
A % 2^n == A & (2^n - 1)
My knee jerk reaction is to use these two things together, and I'm wondering if that is valid?
Specifically, I figure I can use the power of two mod trick to narrow the worst case for the above subtraction method. In other words, quickly mod to the nearest power of two above my constant, then subtract my constant if necessary. Here's the code that is in the actual question, fully expanded.
A = A AND (2^n - 1) # MOD A to the next higher power of two
if A > K: # See if we are still larger than our constant
A -= K # If so, subtract. We now must be lower.
##################
# A = A MOD K ???
##################
On inspection, this should always work, and should always be fast, since the next power of two greater than K should always be such that 2K will be larger. That is, K < 2^n < 2K meaning I should only ever need one extra test, and then possibly one subtraction.
...but this seems too simple. If it worked, I'd expect to have seen it before. But I can't find an example. I can't find a counter example either though. I have checked the usual places. What am I missing?
You can't combine both the approaches. First understand why does the below equation holds true.
A % p == A & (p - 1), where p = 2^n
p will have exactly 1 set bit in it's binary representation, say it's position is x.
So all the numbers which have atleast one set bit in a position greater than x, are all divisible by p, that is why performing AND with p-1 would give all set bits less than 2^x, which is same as performing mod
But that isn't the case when p is not a power of 2.
If that didn't made sense, then take for example:
A = 18 = 10010,
K = 6 = 110,
A % K = 0
According to your approach, you will perform AND operation with A and 7 (= 2^3-1), resulting in 2, which is not the value of MOD.

Select n records at random from a set of N

I need to select n records at random from a set of N (where 0 < n < N).
A possible algorithm is:
Iterate through the list and for each element, make the probability of selection = (number needed) / (number left)
So if you had 40 items, the first would have a 5/40 chance of being selected.
If it is, the next has a 4/39 chance, otherwise it has a 5/39 chance. By the time you get to the end
you will have your 5 items, and often you'll have all of them before that.
Assuming a good pseudo-random number generator, is this algorithm correct?
NOTE
There're many questions of this kind on stackoverflow (a lot of them are marked as duplicates of Select N random elements from a List<T> in C#).
The above algorithm is often proposed (e.g. Kyle Cronin's answer) and
it's always questioned (e.g. see
here, here, here, here...).
Can I have a final word about the matter?
The algorithm is absolutely correct.
It's not the sudden invention of a good poster, it's a well known technique called Selection sampling / Algorithm S (discovered by Fan, Muller and Rezucha (1) and independently by Jones (2) in 1962), well described in TAOCP - Volume 2 - Seminumerical Algorithms - § 3.4.2.
As Knuth says:
This algorithm may appear to be unreliable at first glance and, in fact, to be incorrect. But a careful analysis shows that it is completely trustworthy.
The algorithm samples n elements from a set of size N and the t + 1st element is chosen with probability (n - m) / (N - t), when already m elements have been chosen.
It's easy to see that we never run off the end of the set before choosing n items (as the probability will be 1 when we have k elements to choose from the remaining k elements).
Also we never pick too many elements (the probability will be 0 as soon n == m).
It's a bit harder to demonstrate that the sample is completely unbiased, but it's
... true in spite of the fact that we are not selecting the t + 1st item with probability n / N. This has caused some confusion in the published literature
(so not just on Stackoverflow!)
The fact is we should not confuse conditional and unconditional probabilities:
For example consider the second element; if the first element was selected in the sample (this happen with probability n / N), the second element is selected with probability (n - 1) / (N - 1); if the first element was not selected, the second element is selected with probability n / (N - 1).
The overall probability of selecting the second element is (n / N) ((n - 1) / (N - 1)) + (1 - n/N)(n / (N - 1)) = n/N.
TAOCP - Vol 2 - Section 3.4.2 exercise 3
Apart from theoretical considerations, Algorithm S (and algorithm R / reservoir sampling) is used in many well known libraries (e.g. SGI's original STL implementation, std::experimental::sample,
random.sample in Python...).
Of course algorithm S is not always the best answer:
it's O(N) (even if we will usually not have to pass over all N records: the average number of records considered when n=2 is about 2/3 N; the general formulas are given in
TAOCP - Vol 2 - § 3.4.2 - ex 5/6);
it cannot be used when the value of N isn't known in advance.
Anyway it works!
C. T. Fan, M. E. Muller and I. Rezucha, J. Amer. Stat. Assoc. 57 (1962), pp 387 - 402
T. G. Jones, CACM 5 (1962), pp 343
EDIT
how do you randomly select this item, with a probability of 7/22
[CUT]
In rare cases, you might even pick 4 or 6 elements when you wanted 5
This is from N3925 (small modifications to avoid the common interface / tag dispatch):
template<class PopIter, class SampleIter, class Size, class URNG>
SampleIter sample(PopIter first, PopIter last, SampleIter out, Size n, URNG &&g)
{
using dist_t = uniform_int_distribution<Size>;
using param_t = typename dist_t::param_type;
dist_t d{};
Size unsampled_sz = distance(first, last);
for (n = min(n, unsampled_sz); n != 0; ++first)
{
param_t const p{0, --unsampled_sz};
if (d(g, p) < n) { *out++ = *first; --n; }
}
return out;
}
There aren't floats.
If you need 5 elements you get 5 elements;
if uniform_int_distribution "works as advertised" there is no bias.
Although the algorithm described is technically correct, it depends on having an algorithm to return a bool with arbitrary probability determined by the ratio of two ints. For example, how do you select this item with a probability of 7/22? For the point of talking, let's call it the bool RandomSelect(int x, int y) method, or just the RS(x,y) method, designed to return true with probability x/y. If you're not very concerned about accuracy, the oft-given answer is to use return Random.NextDouble() < (double)x/(double)y; which is inaccurate because Random.NextDouble() is imprecise and not perfectly uniform, and the division (double)x/(double)y is also imprecise. The choice of < or <= should be irrelevant (but it's not) because in theory it's impossible to randomly pick the infinite precision random number exactly equal to the specified probability. While I'm sure an algorithm can be created or found, to implement the RS(x,y) method precisely, which would then allow you to implement the described algorithm correctly, I think that to simply answer this question as "yes the algorithm is correct" would be misleading - as it has misled so many people before, into calculating and choosing elements using double, unaware of the bias they're introducing.
Don't misunderstand me - I'm not saying everyone should avoid using the described algorithm - I'm only saying that unless you find a more precise way to implement the RS(x,y) algorithm, your selections will be subtly biased in favor of some elements more frequently than other elements.
If you care about fairness (equal probability of all possible outcomes) I think it is better, and easier to understand, to use a different algorithm instead, as I've described below:
If you take it as given that the only source of random you have available is random bits, you have to define a technique of random selection that assures equal probability, given binary random data. This means, if you want to pick a random number in a range that happens to be a power of 2, you just pick random bits and return them. But if you want a random number in a range that's not a power of 2, you have to get more random bits, and discard outcomes that could not map to fair outcomes (throw away the random number and try again). I blogged about it with pictoral representations and C# example code here: https://nedharvey.com/blog/?p=284 Repeat the random selection from your collection, until you have n unique items.

Place "sum" and "multiply" operators between the elements of a given list of integers so that the expression results in a specified value

I was given a tricky question.
Given:
A = [a1,a2,...an] (list of positive integers with length "n")
r (positive integer)
Find a list of { *, + } operators
O = [o1,o2,...on-1]
so that if we placed those operators between the elements of "A", the resulting expression would evaluate to "r". Only one solution is required.
So for example if
A = [1,2,3,4]
r = 14
then
O = [*, +, *]
I've implemented a simple recursive solution with some optimisation, but of course it's exponential O(2^n) time, so for an input with length 40, it works for ages.
I wanted to ask if any of you know a sub-exponential solution for this?
Update
Elements of A are between 0-10000,
r can be arbitrarily big
Let A and B be positive integers. Then A + B ≤ A × B + 1.
This little fact can be used to construct a very efficient algorithm.
Let's define a graph. The graph nodes correspond to operations lists, for example, [+, ×, +, +, ×]. There is an edge from graph node X to graph node Y if the Y can be obtained by changing a single + to a × in X. The graph has a source at the node corresponding to [+, +, ..., +].
Now perform a breadth-first search from the source node, constructing the graph as you go. When expanding a node [+, ×, +, +, ×], for example, you (optionally construct then) connect to the nodes [×, ×, +, +, ×], [+, ×, ×, +, ×], and [+, ×, +, ×, ×]. Do not expand to a node if the result of evaluating it is greater than r + k(O), where k(O) is the number of +'s in the operation list O. This is because of the "+ 1" in the fact at the beginning of the answer - consider the case of a = [1, 1, 1, 1, 1], r = 1.
This approach uses O(n 2n) time and O(2n) space (where both are potentially very-loose worst case bounds). This is still an exponential algorithm, however I think you will find it performs very reasonably for non-sinister inputs. (I suspect this problem is NP-complete, which is why I am happy with this "non-sinister inputs" escape clause.)
Here's an O(rn^2)-time, O(rn)-space DP approach. If r << 2^n then this will have better worst-case behaviour than exponential-time branch-and-bound approaches, though even then the latter may still be faster on many instances. This is pseudo-polynomial time, because it takes time proportional to the value of part of its input (r), not its size (which would be log2(r)). Specifically it needs rn bits of memory, so it should give answers in a few seconds for up to around rn < 1,000,000,000 and n < 1000 (e.g. n = 100, r = 10,000,000).
The key observation is that any formula involving all n numbers has a final term that consists of some number i of factors, where 1 <= i <= n. That is, any formula must be in one of the following n cases:
(a formula on the first n-1 terms) + a[n]
(a formula on the first n-2 terms) + a[n-1] * a[n]
(a formula on the first n-3 terms) + a[n-2] * a[n-1] * a[n]
...
a[1] * a[2] * ... * a[n]
Let's call the "prefix" of a[] consisting of the first i numbers P[i]. If we record, for each 0 <= i <= n-1, the complete set of values <= r that can be reached by some formula on P[i], then based on the above, we can quite easily compute the complete set of values <= r that can be reached by P[n]. Specifically, let X[i][j] be a true or false value that indicates whether the prefix P[i] can achieve the value j. (X[][] could be stored as an array of n size-(r+1) bitmaps.) Then what we want to do is compute X[n][r], which will be true if r can be reached by some formula on a[], and false otherwise. (X[n][r] isn't quite the full answer yet, but it can be used to get the answer.)
X[1][a[1]] = true. X[1][j] = false for all other j. For any 2 <= i <= n and 0 <= j <= r, we can compute X[i][j] using
X[i][j] = X[i - 1][j - a[i]] ||
X[i - 2][j - a[i-1]*a[i]] ||
X[i - 3][j - a[i-2]*a[i-1]*a[i]] ||
... ||
X[1][j - a[2]*a[3]*...*a[i]] ||
(a[1]*a[2]*...*a[i] == j)
Note that the last line is an equality test that compares the product of all i numbers in P[i] to j, and returns true or false. There are i <= n "terms" (rows) in the expression for X[i][j], each of which can be computed in constant time (note in particular that the multiplications can be built up in constant time per row), so computing a single value X[i][j] can be done in O(n) time. To find X[n][r], we need to calculate X[i][j] for every 1 <= i <= n and every 0 <= j <= r, so there is O(rn^2) overall work to do. (Strictly speaking we may not need to compute all of these table entries if we use memoization instead of a bottom-up approach, but many inputs will require us to compute a large fraction of them anyway, so it's likely that the latter is faster by a small constant factor. Also a memoization approach requires keeping an "already processed" flag for each DP cell -- which doubles the memory usage when each cell is just 1 bit!)
Reconstructing a solution
If X[n][r] is true, then the problem has a solution (satisfying formula), and we can reconstruct one in O(n^2) time by tracing back through the DP table, starting from X[n][r], at each location looking for any term that enabled the current location to assume the value "true" -- that is, any true term. (We could do this reconstruction step faster by storing more than a single bit per (i, j) combination -- but since r is allowed to be "arbitrarily big", and this faster reconstruction won't improve the overall time complexity, it probably makes more sense to go with the approach that uses the fewest bits per DP table entry.) All satisfying solutions can be reconstructed this way, by backtracking through all true terms instead of just picking any one -- but there may be an exponential number of them.
Speedups
There are two ways that calculation of an individual X[i][j] value can be sped up. First, because all the terms are combined with ||, we can stop as soon as the result becomes true, since no later term can make it false again. Second, if there is no zero anywhere to the left of i, we can stop as soon as the product of the final numbers becomes larger than r, since there's no way for that product to be decreased again.
When there are no zeroes in a[], that second optimisation is likely to be very important in practice: it has the potential to make the inner loop much smaller than the full i-1 iterations. In fact if a[] contains no zeroes, and its average value is v, then after k terms have been computed for a particular X[i][j] value the product will be around v^k -- so on average, the number of inner loop iterations (terms) needed drops from n to log_v(r) = log(r)/log(v). That might be much smaller than n, in which case the average time complexity for this model drops to O(rn*log(r)/log(v)).
[EDIT: We actually can save multiplications with the following optimisation :)]
8/32/64 X[i][j]s at a time: X[i][j] is independent of X[i][k] for k != j, so if we are using bitsets to store these values, we can calculate 8, 32 or 64 of them (or maybe more, with SSE2 etc.) in parallel using simple bitwise OR operations. That is, we can calculate the first term of X[i][j], X[i][j+1], ..., X[i][j+31] in parallel, OR them into the results, then calculate their second terms in parallel and OR them in, etc. We still need to perform the same number of subtractions this way, but the products are all the same, so we can reduce the number of multiplications by a factor of 8/32/64 -- as well as, of course, the number of memory accesses. OTOH, this makes the first optimisation from the previous paragraph harder to accomplish -- you have to wait until an entire block of 8/32/64 bits have become true before you can stop iterating.
Zeroes: Zeroes in a[] may allow us to stop early. Specifically, if we have just computed X[i][r] for some i < n and found it to be true, and there is a zero anywhere to the right of position i in a[], then we can stop: we already have a formula on the first i numbers that evaluates to r, and we can use that zero to "kill off" all numbers to the right of position i by creating one big product term that includes all of them.
Ones: An interesting property of any a[] entry containing the value 1 is that it can be moved to any other position in a[] without affecting whether or not there is a solution. This is because every satisfying formula either has a * on at least one side of this 1, in which case it multiplies some other term and has no effect there, and would likewise have no effect anywhere else; or it has a + on both sides (imagine extra + signs before the first position and after the last), in which case it might as well be added in anywhere.
So, we can safely shunt all 1 values to the end of a[] before doing anything else. The point of doing this is that now we don't have to evaluate these rows of X[][] at all, because they only influence the outcome in a very simple way. Suppose there are m < n ones in a[], which we have moved to the end. Then after computing the m+1 values X[n-m][r-m], X[n-m][r-m+1], X[n-m][r-m+2], ..., X[n-m][r], we already know what X[n][r] must be: if any of them are true, then X[n][r] must be true, otherwise (if they are all false) it must be false. This is because the final m ones can add anywhere from 0 up to m to a formula on the first n-m values. (But if a[] consists entirely of 1s, then at least 1 must be "added" -- they can't all multiply some other term.)
Here is another approach that might be helpful. It is sometimes known as a "meet-in-the-middle" algorithm and runs in O(n * 2^(n/2)). The basic idea is this. Suppose n = 40 and you know that the middle slot is a +. Then, you can brute force all N := 2^20 possibilities for each side. Let A be a length N array storing the possible values of the left side, and similarly let B be a length N array storing the values for the right side.
Then, after sorting A and B, it is not hard to efficiently check for whether any two of them sum to r (e.g. for each value in A, do a binary search on B, or you can even do it in linear time if both arrays are sorted). This part takes O(N * log N) = O(n * 2^(n/2)) time.
Now, this was all assuming the middle slot is a +. If not, then it has to be a *, and you can combine the middle two elements into one (their product), reducing the problem to n = 39. Then you try the same thing, and so on. If you analyze it carefully, you should get O(n * 2^(n/2)) as the asymptotic complexity, since actually the largest term dominates.
You need to do some bookkeeping to actually recover the +'s and *'s, which I have left out to simplify the explanation.

Algorithm for generating a set of Subset-Distinct-Sum integers

I'm attempting to create a scoring system for a card game which would preclude ties in scoring, by setting the point value of each card such that no two combinations of cards could add up to the same score. (For this particular case, I need a set of 17 integers, since there are 17 scorable cards.)
I've tried several heuristic approaches (various winnowing procedures along the lines of taking an array of integers, iteratively generating random subsets, and discard those which appear in subsets sharing a common sum); then exhaustively validating the results (by enumerating their subsets).
From what I've seen, the theoretical limit to the size of such a set is near log2(n), where n is the number of members of the superset from which the subset-distinct-sum subset is drawn. However, while I've been able to approach this, I've not been able to match it. My best result so far is a set of 13 integers, drawn from the 250,000 integers between 10,000 and 25,000,000, counting by hundreds (the latter is immaterial to the algorithm, but is a domain constrain of my use case):
[332600,708900,2130500,2435900,5322500,7564200,10594500,12776200,17326700,17925700,22004400,23334700,24764900]
I've hunted around, and most of the SDS generators are sequence generators that make no pretense of creating dense sets, but instead have the ability to be continued indefinitely to larger and larger numbers (e.g. the Conway-Guy Sequence). I have no such constraint, and would prefer a denser set without requiring a sequence relationship with each other.
(I did consider using the Conway-Guy Sequence n=2..18 * 10,000, but the resulting set has a broader range than I would like. I'd also really like a more general algorithm.)
Edit: For clarity, I'm looking for a way (non-deterministic or dynamic-programming methods are fine) to generate an SDS set denser than those provided by simply enumerating exponents or using a sequence like Conway-Guy. I hope, by discarding the "sequence generator" constraint, I can find numbers much closer together than such sequences provide.
For any value of N, it is readily possible to generate up to Floor(Log2(N))-1 numbers (which we'll call the set "S") such that:
All members of S are less than or equal to N, and
No two distinct subsets of S have the same sum, and
All members of S are within a factor of two of each other.
Your suspicions were correct in that S would not be in any sense extensible (you could not add more members to it)
Method:
For N, find T = 2^P , where T is the highest power of two that is less than or equal to N. That is:
P = Floor( Log2(N) ), and
T = 2^P
Then the members of S can be generated as:
for( i=0 to P-2 ): S(i) = 2^i + 2^(P-1)
Or, to put it another way, S(i) = 2^i, for 0<= i < P-1
This makes for a total of P-1 (or Floor(Log2(N))-1) members. Can two distinct subsets of S ever sum to the same number? No:
Proof
Let's consider any two subsets of S: U and V, which are distinct (that is, they have no members in common). Then the sum of U is:
Sum(U) = O(U)*(T/2) + Sum(2^i| S(i):U)
Where
O(U) is the Order of the set U (how many elements it has),
"S(i):U" means "S(i) is an element of U", and
"|" is the conditioning operator (means "given that.." or "where.."),
So, putting the last two together, Sum(2^i| S(i):U) just means "the sum of all of the powers of two that are elements of U" (remembering that S(i) = 2^i)).
And likewise, the sum of V is:
Sum(V) = O(V)*(2^(P-1)) + Sum(2^i| S(i):V)
Now because U and V are distinct: Sum(2^i| S(i):U) can never be equal, because no two sums of distinct powers of two can ever be equal.
Also, because Sum(2^i; 0 <= i < P-1) = 2^(P-1)-1), these sums of the powers of two must always be less than 2^P-1. This means that the sums of U and V could only be equal if:
O(U)*(2^(P-1)) = O(V)*(2^(P-1))
or
O(U) = O(V)
That is, if U and V have the same number of elements, so that the first terms will be equal (because the second terms can never be as large as any differences in the first terms).
In such a case (O(U) = (O(V)) the first terms are equal, so Sum(U) would equal Sum(V) IFF their second terms (the binary sums) are also equal. However, we already know that they can never be equal, therefore, it can never be true that Sum(U) = Sum(V).
It seems like another way of phrasing the problem is to make sure that the previous terms never sum to the current term. If that's never the case, you'll never have two sums that add up to the same.
Ex: 2, 3, 6, 12, 24, 48, 96, ...
Summing to any single element {i} takes 1 more than the sum of the previous terms, and summing to any multi-element set {i,j} takes more than the sum of previous elements to i and previous elements to j.
More mathematically: (i-1), i, 2i, 4i, 8i, ... 2^n i Should work for any i, n.
The only way this doesn't work is if you're allowed to choose the same number twice in your subset (if that's the case, you should specify it in the problem). But that brings up the issue that Sum{i} = Sum{i} for any number, so that seems like an issue.

Greatest GCD between some numbers

We've got some nonnegative numbers. We want to find the pair with maximum gcd. actually this maximum is more important than the pair!
For example if we have:
2 4 5 15
gcd(2,4)=2
gcd(2,5)=1
gcd(2,15)=1
gcd(4,5)=1
gcd(4,15)=1
gcd(5,15)=5
The answer is 5.
You can use the Euclidean Algorithm to find the GCD of two numbers.
while (b != 0)
{
int m = a % b;
a = b;
b = m;
}
return a;
If you want an alternative to the obvious algorithm, then assuming your numbers are in a bounded range, and you have plenty of memory, you can beat O(N^2) time, N being the number of values:
Create an array of a small integer type, indexes 1 to the max input. O(1)
For each value, increment the count of every element of the index which is a factor of the number (make sure you don't wraparound). O(N).
Starting at the end of the array, scan back until you find a value >= 2. O(1)
That tells you the max gcd, but doesn't tell you which pair produced it. For your example input, the computed array looks like this:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
4 2 1 1 2 0 0 0 0 0 0 0 0 0 1
I don't know whether this is actually any faster for the inputs you have to handle. The constant factors involved are large: the bound on your values and the time to factorise a value within that bound.
You don't have to factorise each value - you could use memoisation and/or a pregenerated list of primes. Which gives me the idea that if you are memoising the factorisation, you don't need the array:
Create an empty set of int, and a best-so-far value 1.
For each input integer:
if it's less than or equal to best-so-far, continue.
check whether it's in the set. If so, best-so-far = max(best-so-far, this-value), continue. If not:
add it to the set
repeat for all of its factors (larger than best-so-far).
Add/lookup in a set could be O(log N), although it depends what data structure you use. Each value has O(f(k)) factors, where k is the max value and I can't remember what the function f is...
The reason that you're finished with a value as soon as you encounter it in the set is that you've found a number which is a common factor of two input values. If you keep factorising, you'll only find smaller such numbers, which are not interesting.
I'm not quite sure what the best way is to repeat for the larger factors. I think in practice you might have to strike a balance: you don't want to do them quite in decreasing order because it's awkward to generate ordered factors, but you also don't want to actually find all the factors.
Even in the realms of O(N^2), you might be able to beat the use of the Euclidean algorithm:
Fully factorise each number, storing it as a sequence of exponents of primes (so for example 2 is {1}, 4 is {2}, 5 is {0, 0, 1}, 15 is {0, 1, 1}). Then you can calculate gcd(a,b) by taking the min value at each index and multiplying them back out. No idea whether this is faster than Euclid on average, but it might be. Obviously it uses a load more memory.
The optimisations I can think of is
1) start with the two biggest numbers since they are likely to have most prime factors and thus likely to have the most shared prime factors (and thus the highest GCD).
2) When calculating the GCDs of other pairs you can stop your Euclidean algorithm loop if you get below your current greatest GCD.
Off the top of my head I can't think of a way that you can work out the greatest GCD of a pair without trying to work out each pair individually (and optimise a bit as above).
Disclaimer: I've never looked at this problem before and the above is off the top of my head. There may be better ways and I may be wrong. I'm happy to discuss my thoughts in more length if anybody wants. :)
There is no O(n log n) solution to this problem in general. In fact, the worst case is O(n^2) in the number of items in the list. Consider the following set of numbers:
2^20 3^13 5^9 7^2*11^4 7^4*11^3
Only the GCD of the last two is greater than 1, but the only way to know that from looking at the GCDs is to try out every pair and notice that one of them is greater than 1.
So you're stuck with the boring brute-force try-every-pair approach, perhaps with a couple of clever optimizations to avoid doing needless work when you've already found a large GCD (while making sure that you don't miss anything).
With some constraints, e.g the numbers in the array are within a given range, say 1-1e7, it is doable in O(NlogN) / O(MAX * logMAX), where MAX is the maximum possible value in A.
Inspired from the sieve algorithm, and came across it in a Hackerrank Challenge -- there it is done for two arrays. Check their editorial.
find min(A) and max(A) - O(N)
create a binary mask, to mark which elements of A appear in the given range, for O(1) lookup; O(N) to build; O(MAX_RANGE) storage.
for every number a in the range (min(A), max(A)):
for aa = a; aa < max(A); aa += a:
if aa in A, increment a counter for aa, and compare it to current max_gcd, if counter >= 2 (i.e, you have two numbers divisible by aa);
store top two candidates for each GCD candidate.
could also ignore elements which are less than current max_gcd;
Previous answer:
Still O(N^2) -- sort the array; should eliminate some of the unnecessary comparisons;
max_gcd = 1
# assuming you want pairs of distinct elements.
sort(a) # assume in place
for ii = n - 1: -1 : 0 do
if a[ii] <= max_gcd
break
for jj = ii - 1 : -1 :0 do
if a[jj] <= max_gcd
break
current_gcd = GCD(a[ii], a[jj])
if current_gcd > max_gcd:
max_gcd = current_gcd
This should save some unnecessary computation.
There is a solution that would take O(n):
Let our numbers be a_i. First, calculate m=a_0*a_1*a_2*.... For each number a_i, calculate gcd(m/a_i, a_i). The number you are looking for is the maximum of these values.
I haven't proved that this is always true, but in your example, it works:
m=2*4*5*15=600,
max(gcd(m/2,2), gcd(m/4,4), gcd(m/5,5), gcd(m/15,15))=max(2, 2, 5, 5)=5
NOTE: This is not correct. If the number a_i has a factor p_j repeated twice, and if two other numbers also contain this factor, p_j, then you get the incorrect result p_j^2 insted of p_j. For example, for the set 3, 5, 15, 25, you get 25 as the answer instead of 5.
However, you can still use this to quickly filter out numbers. For example, in the above case, once you determine the 25, you can first do the exhaustive search for a_3=25 with gcd(a_3, a_i) to find the real maximum, 5, then filter out gcd(m/a_i, a_i), i!=3 which are less than or equal to 5 (in the example above, this filters out all others).
Added for clarification and justification:
To see why this should work, note that gcd(a_i, a_j) divides gcd(m/a_i, a_i) for all j!=i.
Let's call gcd(m/a_i, a_i) as g_i, and max(gcd(a_i, a_j),j=1..n, j!=i) as r_i. What I say above is g_i=x_i*r_i, and x_i is an integer. It is obvious that r_i <= g_i, so in n gcd operations, we get an upper bound for r_i for all i.
The above claim is not very obvious. Let's examine it a bit deeper to see why it is true: the gcd of a_i and a_j is the product of all prime factors that appear in both a_i and a_j (by definition). Now, multiply a_j with another number, b. The gcd of a_i and b*a_j is either equal to gcd(a_i, a_j), or is a multiple of it, because b*a_j contains all prime factors of a_j, and some more prime factors contributed by b, which may also be included in the factorization of a_i. In fact, gcd(a_i, b*a_j)=gcd(a_i/gcd(a_i, a_j), b)*gcd(a_i, a_j), I think. But I can't see a way to make use of this. :)
Anyhow, in our construction, m/a_i is simply a shortcut to calculate the product of all a_j, where j=1..1, j!=i. As a result, gcd(m/a_i, a_i) contains all gcd(a_i, a_j) as a factor. So, obviously, the maximum of these individual gcd results will divide g_i.
Now, the largest g_i is of particular interest to us: it is either the maximum gcd itself (if x_i is 1), or a good candidate for being one. To do that, we do another n-1 gcd operations, and calculate r_i explicitly. Then, we drop all g_j less than or equal to r_i as candidates. If we don't have any other candidate left, we are done. If not, we pick up the next largest g_k, and calculate r_k. If r_k <= r_i, we drop g_k, and repeat with another g_k'. If r_k > r_i, we filter out remaining g_j <= r_k, and repeat.
I think it is possible to construct a number set that will make this algorithm run in O(n^2) (if we fail to filter out anything), but on random number sets, I think it will quickly get rid of large chunks of candidates.
pseudocode
function getGcdMax(array[])
arrayUB=upperbound(array)
if (arrayUB<1)
error
pointerA=0
pointerB=1
gcdMax=0
do
gcdMax=MAX(gcdMax,gcd(array[pointera],array[pointerb]))
pointerB++
if (pointerB>arrayUB)
pointerA++
pointerB=pointerA+1
until (pointerB>arrayUB)
return gcdMax

Resources