What is the point of having "x...n" in Ruby? - ruby

I'm just curious.
Arent both of the code snippets below doing the same thing? Why would someone want to use ... instead of .., wouldnt .. be easier to read?
for x in 1...11
puts x
end
for x in 1..10
puts x
end
Sorry if this is too subjective, I just dont understand why I would want to go from 1 to (n-1) instead of 1 to n

10.5 is included in 1...11, but not in 1..10.
It's not 1 to n vs. 1 to (n - 1), it's 1 <= x <= n vs. 1 <= x < m.

Sometimes the index in some data structure goes form 0 to struct.size() - 1. It's helpful then to have a way of saying this:
a = ['a','b','c']
for i in 0 ... a.length
puts a[i]
end
will print 'a', 'b', 'c'. It you use the .. form it will print an additional nil.

If you use n - 1, then if n is 0, you would have n - 1 of -1, which is used to indicate the end of an array.
array[0...0] # Returns no elements
array[0..-1] # Returns all elements

Related

Algorithm to print all valid combations of n pairs of parenthesis

I'm working on the problem stated in the question statement. I know my solution is correct (ran the program) but I'm curious as to whether or not I'm analyzing my code (below) correctly.
def parens(num)
return ["()"] if num == 1
paren_arr = []
parens(num-1).each do |paren|
paren_arr << paren + "()" unless "()#{paren}" == "#{paren}()"
paren_arr << "()#{paren}"
paren_arr << "(#{paren})"
end
paren_arr
end
parens(3), as an example, will output the following:
["()()()", "(()())", "(())()", "()(())", "((()))"]
Here's my analysis:
Every f(n) value is roughly 3 times as many elements as f(n-1). So:
f(n) = 3 * f(n-1) = 3 * 3 * f(n-2) ~ (3^n) time cost.
By a similar analysis, the stack will be occupied by f(1)..f(n) and so the space complexity should be 3^n.
I'm not sure if this analysis for either time or space is correct. On the one hand, the stack only holds n function calls, but each of these calls returns an array ~3 times as big as the call before it. Does this factor into space cost? And is my time analysis correct?
As others have mentioned, your solution is not correct.
My favourite solution to this problem generates all the valid combinations by repeatedly incrementing the current string to the lexically next valid combination.
"Lexically next" breaks down into a few rules that make it pretty easy:
The first difference in the string changes a '(' to a ')'. Otherwise the next string would be lexically before the current one.
The first difference is as far to the right as possible. Otherwise there would be smaller increments.
The part after the first difference is lexically minimal, again because otherwise there would be smaller increments. In this case that means that all the '('s come before all the ')'.
So all you have to do is find the rightmost '(' that can be changed to a ')', flip it, and then append the correct number of '('s and ')'s.
I don't know Ruby, but in Python it looks like this:
current="(((())))"
while True:
print(current)
opens=0
closes=0
pos=0
for i in range(len(current)-1,-1,-1):
if current[i]==')':
closes+=1
else:
opens+=1
if closes > opens:
pos=i
break
if pos<1:
break
current = current[:pos]+ ")" + "("*opens + ")"*(closes-1)
Output:
(((())))
((()()))
((())())
((()))()
(()(()))
(()()())
(()())()
(())(())
(())()()
()((()))
()(()())
()(())()
()()(())
()()()()
Solutions like this turn out to be easy and fast for many types of "generate all the combinations" problems.
Recursive reasoning makes a simple solution. If the number of left parens remaining to emit is positive, emit one and recur. If the number of right parens remaining to emit is greater than the number of left, emit and recur. The base case is when all parens, both left and right, have been emitted. Print.
def parens(l, r = l, s = "")
if l > 0 then parens(l - 1, r, s + "(") end
if r > l then parens(l, r - 1, s + ")") end
if l + r == 0 then print "#{s}\n" end
end
As others have said, the Catalan numbers give the number of strings that will be printed.
While this Ruby implementation doesn't achieve it, a lower level language (like C) would make it easy to use a single string buffer: O(n) space. Due to substring copies, this one is O(n^2). But since the run time and output length are O(n!), O(n) space inefficiency doesn't mean much.
I found Tom Davis' article, "Catalan Numbers," very helpful in explaining one recursive method for defining the Catalan Numbers. I'll try to explain it myself (in part, to see how much of it I've understood) as it may be applied to finding the set of all unique arrangements of N matched parentheses (e.g., 1 (); 2 ()(), (()); etc. ).
For N > 1 let (A)B represent one arrangement of N matched parentheses, where A and B each have only balanced sets of parentheses. Then we know that if A contains k matched sets, B must have the other N - k - 1, where 0 <= k <= N - 1.
In the following example, a dot means the group has zero sets of parentheses:
C_0 => .
C_1 => (.)
To enumerate C_2, we arrange C_1 as AB in all ways and place the second parentheses around A:
. () = AB = C_0C_1 => (.)()
() . = AB = C_1C_0 => (()) .
Now for C_3, we have three partitions for N - 1, each with its own combinations: C_0C_2, C_1C_1, C_2C_0
C_0C_2 = AB = . ()() and . (()) => ()()(), ()(())
C_1C_1 = AB = ()() => (())()
C_2C_0 = AB = ()() . and (()) . => (()()), ((()))
We can code this method by keeping a set for each N and iterating over the combinations for each partition. We'll keep the individual arrangements as bits: 0 for left and 1 for right (this appears backwards when cast as a binary string).
def catalan
Enumerator.new do |y|
# the zero here represents none rather than left
s = [[0],[2]]
y << [0]
y << [2]
i = 2
while true
s[i] = []
(0..i - 1).each do |k|
as = s[k]
bs = s[i - k - 1]
as.each do |a|
bs.each do |b|
if a != 0
s[i] << ((b << (2*k + 2)) | (1 << (2*k + 1)) | (a << 1))
else
s[i] << (2 | (b << 2))
end
end # bs
end # as
end # k
y.yield(s[i])
i = i + 1
end # i
end # enumerator
end
catalan.take(4)
# => [[0], [2], [10, 12], [42, 50, 44, 52, 56]]
The yielder is lazy: although the list is infinite, we can generate as little as we like (using .take for example):
catalan.take(4).last.map{|x| x.to_s(2)}
# => ["101010", "110010", "101100", "110100", "111000"]
The former generation obliges us to keep all previous sets in order to issue the next. Alternatively, we can build a requested set through a more organic type, meandering recursion. This next version yields each arrangement to the block, so we can type:
catalan(4){
|x| (0..7).reduce(""){
|y,i| if x[i] == 0 then y + "(" else y + ")" end
}
}.take(14)
# => ["(((())))", "((()()))", "((())())", "((()))()", "(()(()))", "(()()())",
# "(()())()", "(())(())", "(())()()", "()((()))", "()(()())", "()(())()",
# "()()(())", "()()()()"]
Direct generation:
def catalan(n)
Enumerator.new do |y|
s = [[0,0,0]]
until s.empty?
left,right,result = s.pop
if left + right == 2 * n
y << yield(result)
end
if right < left
s << [left, right + 1, result | 1 << (left + right)]
end
if left < n
s << [left + 1, right, result]
end
end
end
end

Sum of Fibonacci even number

I'm currently working on small ruby projects from project Euler site. I was given a task to sum even fibonacci numbers that are less than 4 millions. Unfortunately there is a small bug in my code, because when I change the limit e.i. to 100, it prints 188 instead of 44. Surprisingly this program gives the right answer but i don't really know in what way my code is wrong.
a=[]; a[0]=1; a[1]=1;
i = 1
while a[-1] < 608
a[i+1]=(a[i] + a[i-1])
i +=1
end
x = 0
a.each do |num|
if num % 2 == 0
x += num
end
end
print "The sum of even Fibonacci number is: #{x}"
The problem comes from the second iteration. You are stopping the generation of Fibonacci numbers when one of the numbers cross the limit (ie when the last number is > 100).
It turns out that after the generation step, the array is [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144], this explains your wrong result 188 = 144+44.
So, your code works only when the last element generated is odd, which is the case in Euler's problem test. In order to correct that, change your second iteration from a.each do ... end to a[0...-1].each do ... end In order to iterate through the array except the last element.
BTW I would recommend you not to use an array here.
You are just wasting memory and ruby is losing time on extending it (this can be solved via Array.new(ARRAY_SIZE)).
Since you don't actually need a fibbonaci sequence you can just have something like this:
LIMIT = 4_000_000
a = 1
b = 1
next_number = a + b
sum = 0
while next_number < LIMIT
sum += next_number if next_number.even?
a = b
b = next_number
next_number = a + b # or next_number += a
end
UPD. Oh my god I don't know why this question appeared in my feed. Sorry for necroposting:)

implement shell sort by ruby

I try to implement shell sort by ruby.
def shell_sort(list)
d = list.length
return -1 if d == 0
(0...list.length).each do |i|
d = d / 2
puts "d:#{d}"
(0...(list.length-d)).each do |j|
if list[j] >= list[j+d]
list[j], list[j+d] = list[j+d], list[j]
end
end
puts list.inspect
break if d == 1
end
list
end
puts shell_sort([10,9,8,7,6,5,4,3,2,1]).inspect
but the result is incorrect.
=>[2, 1, 3, 4, 5, 7, 6, 8, 9, 10]
I don't know where going wrong, hope someone can help me. Thanks in advance!
I referenced Shell Sort in here : Shell Sort - Wikepedia, and from that I have understood your algorithm is wrong. Iteration of gap sequence is alright, I mean you iterate only upto d/2 == 1.
But for a gap, let's say 2, you simply iterate from 0 to list.length-2 and swap every j and j+2 elements if list[j] is greater than list[j+2]. That isn't even a proper insertion sort, and Shell Sort requires Insertion sorts on gaps. Also Shell Sort requires that after you do an x gap sort, every xth element, starting from anywhere will be sorted (see the example run on the link and you can verify yourself).
A case where it can wrong in a 2 gap sort pass :
list = 5,4,3,2,1
j = 0 passed :
list = 3,4,5,2,1
j = 1 passed :
list = 3,2,5,4,1
j = 2 passed
list = 3,2,1,4,5
After it completes, you can see that every 2nd element starting from 0 isn't in a sorted order. I suggest that you learn Insertion Sort first, then understand where and how it is used in Shell Sort, and try again, if you want to do it by yourself.
Anyway, I have written one (save it for later if you want) taking your method as a base, with a lot of comments. Hope you get the idea through this. Also tried to make the outputs clarify the how the algorithm works.
def shell_sort(list)
d = list.length
return -1 if d == 0
# You select and iterate over your gap sequence here.
until d/2 == 0 do
d = d / 2
# Now you pick up an index i, and make sure every dth element,
# starting from i is sorted.
# i = 0
# while i < list.length do
0.step(list.length) do |i|
# Okay we picked up index i. Now it's just plain insertion sort.
# Only difference is that we take elements with constant gap,
# rather than taking them up serially.
# igap = i + d
# while igap < list.length do
(i+d).step(list.length-1, d) do |igap|
# Just like insertion sort, we take up the last most value.
# So that we can shift values greater than list[igap] to its side,
# and assign it to a proper position we find for it later.
temp = list[igap]
j = igap
while j >= i do
break if list[j] >= list[j - d]
list[j] = list[j-d]
j -= d
end
# Okay this is where it belongs.
list[j] = temp
#igap += d
end
# i += 1
end
puts "#{d} sort done, the list now : "
puts list.inspect
end
list
end
list = [10,9,8,7,6,5,4,3,2,1]
puts "List before sort : "
puts list.inspect
shell_sort(list)
puts "Sorted list : "
puts list.inspect
I think your algorithm needs a little tweaking.
The reason it fails is simply because on the last run (when d == 1) the smallest element (1) isn't near enough the first element to swap it in in one go.
The easiest way to make it work is to "restart" your inner loop whenever elements switch places. So, a little bit rough solution would be something like
(0...(list.length-d)).each do |j|
if list[j] >= list[j+d]
list[j], list[j+d] = list[j+d], list[j]
d *= 2
break
end
end
This solution is of course far from optimal, but should achieve required results with as little code as possible.
You should just do a last run on array. To simplify your code I extracted exchange part into standalone fucntion so you could see now where you should do this:
def exchange e, list
(0...(list.length-e)).each do |j|
if list[j] >= list[j+e]
list[j], list[j+e] = list[j+e], list[j]
end
end
end
def shell_sort(list)
d = list.length
return -1 if d == 0
(0...list.length).each do |i|
d = d / 2
puts "d:#{d}"
exchange(d, list)
puts list.inspect
if d == 1
exchange(d, list)
break
end
end
list
end
arr = [10,9,8,7,6,5,4,3,2,1]
p shell_sort(arr)
Result:
#> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Ruby challenge: experienced developers opinions

I'm working on some ruby problems geared towards new developers, but I would like the opinions of experienced developers on this. Sorry for the long post, and I really appreciate your time and opinions.
Problem Question
Write a function, nearest_larger(arr, i) which takes an array and an
index. The function should return another index, j: this should
satisfy:
(a) arr[i] < arr[j], AND
(b) there is no j2 closer to i than j where arr[i] < arr[j].
In case of ties (see example below), choose the earliest (left-most)
of the two indices. If no number in arr is larger than arr[i],
return nil.
Difficulty: 2/5
Rspec Test
describe "#nearest_larger" do
it "handles a simple case to the right" do
nearest_larger([2,3,4,8], 2).should == 3
end
it "handles a simple case to the left" do
nearest_larger([2,8,4,3], 2).should == 1
end
it "treats any two larger numbers like a tie" do
nearest_larger([2,6,4,8], 2).should == 1
end
it "should choose the left case in a tie" do
nearest_larger([2,6,4,6], 2).should == 1
end
it "handles a case with an answer > 1 distance to the left" do
nearest_larger([8,2,4,3], 2).should == 0
end
it "handles a case with an answer > 1 distance to the right" do
nearest_larger([2,4,3,8], 1).should == 3
end
it "should return nil if no larger number is found" do
nearest_larger( [2, 6, 4, 8], 3).should == nil
end
end
Solution
def nearest_larger arr, idx
diff = 1
loop do
l = idx - diff
r = idx + diff
return l if (l >= 0) && (arr[l] > arr[idx])
return r if (r < arr.length) && (arr[r] > arr[idx])
return nil if (l < 0) && (r >= arr.length)
diff += 1
end
end
Feedback
How would you go about working towards a solution for this problem? (what's your process?)
In your opinion do find the Problem Question clear and easy to understand?
How long should it take you to solve this problem? (10min, 20min, ...?)
Do agree with the level of difficulty? (Keep in mind this is geared towards new developers)
If willing: please post your own solution, showcasing your style of solving this problem.
I decided to post this question because I know how easy it can be for new developer to get stuck on a problem and not know what to write first. I'm hoping your responses will give an insight on how you would work through a problem that you perceive as a challenge.
I have not an experienced developer, or even an inexperienced one, but I will give you my thoughts anyway.
1 How would you go about working towards a solution for this problem? (what's your process?)
I would look to break into pieces, but surely everyone does that. For example, here the values in the array are only used to pull out the indices of elements that are larger, so I'd see the first problem as pulling out the indices and the second problem as dealing with the indices alone. I'd further simplify the latter by subtracting i from each index so that j and be compared to k like so: if j.abs < k.abs ..., rather than if (j-i).abs < (k-i).abs.... In choosing among different approaches, I tend to look for the one that is most easily understood ("reads best").
2. In your opinion do find the Problem Question clear and easy to understand?
Yes.
3. How long should it take you to solve this problem?
I refuse to answer on the grounds that it would surely incriminate me.
4. Do you agree with the level of difficulty?
It seems about right. It would be a "beginner" problem at rubeque.com.
5. If willing: please post your own solution, showcasing your style of solving this problem.
Sure.
def nearest_larger(arr, i)
ret = nearest_to_zero( arr.each_with_index
.select { |e,j| e > arr[i] }
.map { |_,j| j-i } )
ret ? ret + i : nil
end
I looked at two ways of writing nearest_to_zero(). The first is short, direct and clear, but inefficient, using sort!:
def nearest_to_zero(a)
a.sort! { |j,k| (j.abs == k.abs) ? j <=> k : j.abs <=> k.abs }
a.any? ? a.first : nil
end
More efficient, but not as pretty:
def nearest_to_zero(a)
neg, pos = a.partition { |e| e < 0 }
case
when neg.empty?
pos.empty? ? nil : pos.first
when pos.empty?
neg.last
else
pos.last.abs < neg.last.abs ? pos.first : neg.last
end
end
For arr = [2,5,4,8,10], i = 2, the following steps are performed by nearest_larger():
a = arr.each_with_index.select { |e,j| e > arr[i] } # => [[5,1],[8,3],[10,4]]
b = a.map { |_,j| j-i } # => [-1,1,2]
ret = nearest_to_zero(b) # => -1
ret ? ret + i : nil # => 1
In the first nearest_to_zero(), if two indices have equal absolute value (meaning they are equally close to i before the transformation), the tie goes to the index with the lower vlaue; else it is the index with the smaller absolute value.
In the second nearest_to_zero():
neg, pos = [-1,1,2].partition {|e| e < 0} # => [[-1],[1,2]]
The rest should be self-explanatory.
I had read about rspec, but had not used it before. It was about time that it did. My code passed.
How would you go about working towards a solution for this problem? (what's your process?)
Start with a simple example, e.g. one of the tests. It is discovered that if the array element arr[i-1] is greater than arr[i] then you can immediately return i-1 as the answer. So you can just check in succession: i-1, i+1, i-2, i+2, i-3, i+3 etc. and return the first index that satisfies the inequality.
In your opinion do find the Problem Question clear and easy to understand?
Yes; the tests help but it only confirmed my understanding from the worded problem.
How long should it take you to solve this problem? (10min, 20min, ...?)
For a student in a test/classroom environment, no more than 10min. Depending on how much preparatory material they have had before this, maybe even less.
Do agree with the level of difficulty? (Keep in mind this is geared towards new developers)
Yes, 2/5 seems right.
If willing: please post your own solution, showcasing your style of solving this problem.
def nearest_larger( a, i )
2.upto([i,a.length-i].max << 1) do |k|
j = (k&1).zero? ? i - (k>>1) : i + (k>>1)
return j if 0 <= j && j < a.length && a[i] < a[j]
end
return nil
end
Addendum: Thinking in Bits
This addendum will go through in greater detail the problem solving that went into the above solution for the benefit of new programmers.
As was mentioned in the answer to Question #1 above, the return value of nearest_larger is the first index j for which a[i] < a[j] as j iterates through the sequence
i-1, i+1, i-2, i+2, i-3, i+3, ...
This opens the way to a sub-problem, which is how to generate this sequence of numbers. When actually writing the program, I used comments as a "scratch pad", and in the code had something like this:
# -1, 1, -2, 2, -3, 3, ... (Sequence G)
from which the prior sequence is constructed by just adding i to each term. Call this Sequence G. Now this is where a "binary intuition" would come into play. Consider a simple sequence of binary numbers that increases by one after each term, shown in Column A, and the familiar decimal representation is shown in Column B:
A B C D E F
----------------------------
0000 0 000 0 0 0
0001 1 000 1 0 0
0010 2 001 0 1 -1
0011 3 001 1 1 1
0100 4 010 0 2 -2
0101 5 010 1 2 2
0110 6 011 0 3 -3
0111 7 011 1 3 3
Now split the bits in each number into two groups: all the bits other than bit 0 (the right-most bit) as shown in Column C, and bit 0 shown in Column D. In other words, concatenate C and D to get A. The decimal representation of C is in column E. Notice that column D conveniently flips between 0 and 1, just as in Sequence G the numbers flip between negative and positive. We will use this to construct column F, which is the same as E, except when D is 0 make F negative. Finally, if we just start in the above table at A=0010 (or B=2) then Column F gives us the above Sequence G.
So now how do we get Column F from A in code? This is where bit operations come in to play.
C = A >> 1 - The >> right-shift operator shifts the bits on the LHS (left-hand side) by RHS (right-hand side). In this case, each value A is shifted to the right one place. The right-most bit is lost. Mathematically, it is the same as dividing by 2 and dropping the remainder in this case (B/2 == E with remainder dropped.)
D = A & 1 - The & is the bitwise AND operator. By "anding" A with 1, we select only bit 0; see the link in the prior sentence for more detail. This gives us Column D.
Putting this together in the code, we'll have k be the iteration variable that starts at 2 and increments by 1 each time. Then the above analysis gives us j:
j = (k&1).zero? ? i - (k>>1) : i + (k>>1)
The first value for j which is both in bounds and for which a[i] < a[j] holds is automatically the answer, so it can be returned immediately:
return j if 0 <= j && j < a.length && a[i] < a[j]
Finally, if there are no valid values for j then return nil. Other than calculating a lower upper-bound for k, which is left as a homework problem, that is the entirety of the nearest_larger function.
In actual practice, for a problem like this, a readable solution as posed in the OP is preferable since it is more clear and accessible to a wider group of programmers. This present approach was motivated by an opportunity to demonstrate the use of bit operations.

Simple recursion problem

I'm taking my first steps into recursion and dynamic programming and have a question about forming subproblems to model the recursion.
Problem:
How many different ways are there to
flip a fair coin 5 times and not have
three or more heads in a row?
If some could put up some heavily commented code (Ruby preferred but not essential) to help me get there. I am not a student if that matters, this is a modification of a Project Euler problem to make it very simple for me to grasp. I just need to get the hang of writing recursion formulas.
If you would like to abstract the problem into how many different ways are there to flip a fair coin Y times and not have Z or more heads in a row, that may be beneficial as well. Thanks again, this website rocks.
You can simply create a formula for that:
The number of ways to flip a coin 5 times without having 3 heads in a row is equal to the number of combinations of 5 coin flips minus the combinations with at least three heads in a row. In this case:
HHH-- (4 combinations)
THHH- (2 combinations)
TTHHH (1 combination)
The total number of combinations = 2^5 = 32. And 32 - 7 = 25.
If we flip a coin N times without Q heads in a row, the total amount is 2^N and the amount with at least Q heads is 2^(N-Q+1)-1. So the general answer is:
Flip(N,Q) = 2^N - 2^(N-Q+1) +1
Of course you can use recursion to simulate the total amount:
flipme: N x N -> N
flipme(flipsleft, maxhead) = flip(flipsleft, maxhead, 0)
flip: N x N x N -> N
flip(flipsleft, maxhead, headcount) ==
if flipsleft <= 0 then 0
else if maxhead<=headcount then 0
else
flip(flipsleft - 1, maxhead, headcount+1) + // head
flip(flipsleft - 1, maxhead, maxhead) // tail
Here's my solution in Ruby
def combination(length=5)
return [[]] if length == 0
combination(length-1).collect {|c| [:h] + c if c[0..1]!= [:h,:h]}.compact +
combination(length-1).collect {|c| [:t] + c }
end
puts "There are #{combination.length} ways"
All recursive methods start with an early out for the end case.
return [[]] if length == 0
This returns an array of combinations, where the only combination of zero length is []
The next bit (simplified) is...
combination(length-1).collect {|c| [:h] + c } +
combination(length-1).collect {|c| [:t] + c }
So.. this says.. I want all combinations that are one shorter than the desired length with a :head added to each of them... plus all the combinations that are one shorter with a tail added to them.
The way to think about recursion is.. "assuming I had a method to do the n-1 case.. what would I have to add to make it cover the n case". To me it feels like proof by induction.
This code would generate all combinations of heads and tails up to the given length.
We don't want ones that have :h :h :h. That can only happen where we have :h :h and we are adding a :h. So... I put an if c[0..1] != [:h,:h] on the adding of the :h so it will return nil instead of an array when it was about to make an invalid combination.
I then had to compact the result to ignore all results that are just nil
Isn't this a matter of taking all possible 5 bit sequences and removing the cases where there are three sequential 1 bits (assuming 1 = heads, 0 = tails)?
Here's one way to do it in Python:
#This will hold all possible combinations of flipping the coins.
flips = [[]]
for i in range(5):
#Loop through the existing permutations, and add either 'h' or 't'
#to the end.
for j in range(len(flips)):
f = flips[j]
tails = list(f)
tails.append('t')
flips.append(tails)
f.append('h')
#Now count how many of the permutations match our criteria.
fewEnoughHeadsCount = 0
for flip in flips:
hCount = 0
hasTooManyHeads = False
for c in flip:
if c == 'h': hCount += 1
else: hCount = 0
if hCount >= 3: hasTooManyHeads = True
if not hasTooManyHeads: fewEnoughHeadsCount += 1
print 'There are %s ways.' % fewEnoughHeadsCount
This breaks down to:
How many ways are there to flip a fair coin four times when the first flip was heads + when the first flip was tails:
So in python:
HEADS = "1"
TAILS = "0"
def threeOrMoreHeadsInARow(bits):
return "111" in bits
def flip(n = 5, flips = ""):
if threeOrMoreHeadsInARow(flips):
return 0
if n == 0:
return 1
return flip(n - 1, flips + HEADS) + flip(n - 1, flips + TAILS)
Here's a recursive combination function using Ruby yield statements:
def combinations(values, n)
if n.zero?
yield []
else
combinations(values, n - 1) do |combo_tail|
values.each do |value|
yield [value] + combo_tail
end
end
end
end
And you could use regular expressions to parse out three heads in a row:
def three_heads_in_a_row(s)
([/hhh../, /.hhh./, /..hhh/].collect {|pat| pat.match(s)}).any?
end
Finally, you would get the answer using something like this:
total_count = 0
filter_count = 0
combinations(["h", "t"], 5) do |combo|
count += 1
unless three_heads_in_a_row(combo.join)
filter_count += 1
end
end
puts "TOTAL: #{ total_count }"
puts "FILTERED: #{ filter_count }"
So that's how I would do it :)

Resources