Related
I have a following problem.
f[1]=1;
f[2]=2;
f[_]:=0;
dvs = DownValues[f];
this gives
dvs =
{
HoldPattern[f[1]] :> 1,
HoldPattern[f[2]] :> 2,
HoldPattern[f[_]] :> 0
}
My problem is that I would like to extract only definitions for f[1] and f[2] etc but not the general definition f[_], and I do not know how to do this.
I tried,
Cases[dvs, HoldPattern[ f[_Integer] :> _ ]] (*)
but it gives me nothing, i.e. the empty list.
Interestingly, changing HoldPattern into temporary^footnote
dvs1 = {temporary[1] :> 1, temporary[2] :> 2, temporary[_] :> 0}
and issuing
Cases[dvs1, HoldPattern[temporary[_Integer] :> _]]
gives
{temporary[1] :> 1, temporary[2] :> 2}
and it works. This means that (*) is almost a solution.
I do not not understand why does it work with temporary and not with HoldPattern? How can I make it work directly with HoldPattern?
Of course, the question is what gets evaluated and what not etc. The ethernal problem when coding in Mathematica. Something for real gurus...
With best regards
Zoran
footnote = I typed it by hand as replacement "/. HoldPattern -> temporary" actually executes the f[_]:=0 rule and gives someting strange, this excecution I certainly would like to avoid.
The reason is that you have to escape the HoldPattern, perhaps with Verbatim:
In[11]:= Cases[dvs,
Verbatim[RuleDelayed][
Verbatim[HoldPattern][HoldPattern[f[_Integer]]], _]]
Out[11]= {HoldPattern[f[1]] :> 1, HoldPattern[f[2]] :> 2}
There are just a few heads for which this is necessary, and HoldPattern is one of them, precisely because it is normally "invisible" to the pattern-matcher. For your temporary, or other heads, this wouldn't be necessary. Note by the way that the pattern f[_Integer] is wrapped in HoldPattern - this time HoldPattern is used for its direct purpose - to protect the pattern from evaluation. Note that RuleDelayed is also wrapped in Verbatim - this is in fact another common case for Verbatim - this is needed because Cases has a syntax involving a rule, and we do not want Cases to use this interpretation here. So, this is IMO an overall very good example to illustrate both HoldPattern and Verbatim.
Note also that it is possible to achieve the goal entirely with HoldPattern, like so:
In[14]:= Cases[dvs,HoldPattern[HoldPattern[HoldPattern][f[_Integer]]:>_]]
Out[14]= {HoldPattern[f[1]]:>1,HoldPattern[f[2]]:>2}
However, using HoldPattern for escaping purposes (in place of Verbatim) is IMO conceptually wrong.
EDIT
To calrify a little the situation with Cases, here is a simple example where we use the syntax of Cases involving transformation rules. This extended syntax instructs Cases to not only find and collect matching pieces, but also transform them according to the rules, right after they were found, so the resulting list contains the transformed pieces.
In[29]:= ClearAll[a, b, c, d, e, f];
Cases[{a, b, c, d, e, f}, s_Symbol :> s^2]
Out[30]= {a^2, b^2, c^2, d^2, e^2, f^2}
But what if we need to find elements that are themselves rules? If we just try this:
In[33]:= Cases[{a:>b,c:>d,e:>f},s_Symbol:>_]
Out[33]= {}
It doesn't work since Cases interprets the rule in the second argument as an instruction to use extended syntax, find a symbol and replace it with _. Since it searches on level 1 by default, and symbols are on level 2 here, it finds nothing. Observe:
In[34]:= Cases[{a:>b,c:>d,e:>f},s_Symbol:>_,{2}]
Out[34]= {_,_,_,_,_,_}
In any case, this is not what we wanted. Therefore, we have to force Cases to consider the second argument as a plain pattern (simple, rather than extended, syntax). There are several ways to do that, but all of them "escape" RuleDelayed (or Rule) in some way:
In[37]:= Cases[{a:>b,c:>d,e:>f},(s_Symbol:>_):>s]
Out[37]= {a,c,e}
In[38]:= Cases[{a:>b,c:>d,e:>f},Verbatim[RuleDelayed][s_Symbol,_]:>s]
Out[38]= {a,c,e}
In[39]:= Cases[{a:>b,c:>d,e:>f},(Rule|RuleDelayed)[s_Symbol,_]:>s]
Out[39]= {a,c,e}
In all cases, we either avoid the extended syntax for Cases (last two examples), or manage to use it to our advantage (first case).
Leonid, of course, completely answered the question about why your temporary solution works but HoldPattern does not. However, as an answer to your original problem of extracting the f[1] and f[2] type terms, his code is a bit ugly. To solve just the problem of extracting these terms, I would just concentrate on the structure of the left-hand-side of the definition and use the fact that FreeQ searches at all levels. So, defining
f[1] = 1; f[2] = 2; f[_] := 0;
dvs = DownValues[f];
All of the following
Select[dvs, FreeQ[#, Verbatim[_]] &]
Select[dvs, FreeQ[#, Verbatim[f[_]]] &]
Select[dvs, ! FreeQ[#, HoldPattern[f[_Integer]]] &]
yield the result
{HoldPattern[f[1]] :> 1, HoldPattern[f[2]] :> 2}
Provided there are no f[...] (or, for the first version, Blank[]) terms on the right-hand-side of the downvalues of f, then one of the above will probably be suitable.
Based on Simon's excellent solution here, I suggest:
Cases[DownValues[f], _?(FreeQ[#[[1]], Pattern | Blank] &)]
In Mathematica, I'd like to do something along the lines of:
f[Rational[a_, b_], Rational[c_, d_]] := {a+c, b+d}
But if I evaluate it with expressions of the following form I get the wrong result:
In: f[Rational[50, 100], Rational[4, 10]]
Out: {3, 7}
(* Expected: 54 / 110 -> 27 / 55 *)
Is there any way I can force Mathematica to stop simplifying the expression immediately? I can just do a hold on whatever I pass in, then have the function in question just call ReleaseHold[..] on whatever what was passed in.
This solution is very ugly though, and I don't want to have to do this. I know some functions in Mathematica automatically hold whatever is passed in and delay evaluating it for some reason or another, and I would like to do this here.
In short: How can I force Mathematica to lazily evaluate something being passed into a function without having to manually hold it?
In the standard evaluation procedure, each argument of a function is evaluated in turn. This is prevented by setting the attributes HoldFirst, HoldRest and HoldAll. These attributes make Mathematica "hold" particular arguments in an unevaluated form.
http://reference.wolfram.com/legacy/v5/TheMathematicaBook/PrinciplesOfMathematica/EvaluationOfExpressions/2.6.5.html
e.g.
SetAttributes[yourFunction, HoldFirst]
http://reference.wolfram.com/mathematica/ref/HoldFirst.html
The docs say any auto-Held arguments are automatically evaluated the first time you use them in the function body. However if for some reason you want to continue working with the argument in the Hold form (e.g. if you'd like to do pattern-matching and rewriting on the unevaluated form of the expression), then perhaps you can re-Hold it.
Using the HoldAll attribute ninjagecko mentioned I was able to craft a solution.
There was actually another issue going on that I wasn't able to see immediately. Specifically, my function wasn't pattern matching as I thought it would be.
I thought my initial issue was simply that Mathematica was automatically simplifying my expressions and I needed to lazily evaluate the parameters being passed in for the correct behavior.
In reality, I forgot that there are multiple ways of representing expressions in Mathematica. As a toy example consider the following function which extracts the numerator and denominator of a fraction:
ExtractNumDem[Fraction[a_, b_]] := {a, b}
(* Already incorrect, ExtractNumDem[4 / 100] gives {1, 25} *)
Just adding the HoldAll (Or HoldFirst even) attribute results in another issue:
SetAttributess[ExtractNumDem, HoldAll];
ExtractNumDem[4 / 100] (* Gives ExtractNumDem[4 / 100] *)
The expression 4 / 100 is actually evaluating to Times[4, Power[100, -1]]. To fix this second issue I had to add a definition for fractions that look like that:
ExtractNumDem[Times[a_, Power[b_, -1]] := {a, b}
ExtractNumDem[4/100] (* Now gives {4, 100} *)
My solution to fixing the issue in my original answer applied the same exact principle. Here's some code to actually see the issue I was running into:
ClearAll[ExtractNumDem]
ExtractNumDem[Rational[a_, b_]] := {a, b}
ExtractNumDem[4 / 100]
SetAttributes[ExtractNumDem, HoldAll];
ExtractNumDem[4 / 100]
ExtractNumDem[Times[a_, Power[b_, -1]]] := {a, b}
ExtractNumDem[4/100]
I just noticed one undocumented feature of internal work of *Set* functions in Mathematica.
Consider:
In[1]:= a := (Print["!"]; a =.; 5);
a[b] = 2;
DownValues[a]
During evaluation of In[1]:= !
Out[3]= {HoldPattern[a[b]] :> 2}
but
In[4]:= a := (Print["!"]; a =.; 5);
a[1] = 2;
DownValues[a]
During evaluation of In[4]:= !
During evaluation of In[4]:= Set::write: Tag Integer in 5[1] is Protected. >>
Out[6]= {HoldPattern[a[b]] :> 2}
What is the reason for this difference? Why a is evaluated although Set has attribute HoldFirst? For which purposes such behavior is useful?
And note also this case:
In[7]:= a := (Print["!"]; a =.; 5)
a[b] ^= 2
UpValues[b]
a[b]
During evaluation of In[7]:= !
Out[8]= 2
Out[9]= {HoldPattern[5[b]] :> 2}
Out[10]= 2
As you see, we get the working definition for 5[b] avoiding Protected attribute of the tag Integer which causes error in usual cases:
In[13]:= 5[b] = 1
During evaluation of In[13]:= Set::write: Tag Integer in 5[b] is Protected. >>
Out[13]= 1
The other way to avoid this error is to use TagSet*:
In[15]:= b /: 5[b] = 1
UpValues[b]
Out[15]= 1
Out[16]= {HoldPattern[5[b]] :> 1}
Why are these features?
Regarding my question why we can write a := (a =.; 5); a[b] = 2 while cannot a := (a =.; 5); a[1] = 2. In really in Mathematica 5 we cannot write a := (a =.; 5); a[b] = 2 too:
In[1]:=
a:=(a=.;5);a[b]=2
From In[1]:= Set::write: Tag Integer in 5[b] is Protected. More...
Out[1]=
2
(The above is copied from Mathematica 5.2)
We can see what happens internally in new versions of Mathematica when we evaluate a := (a =.; 5); a[b] = 2:
In[1]:= a:=(a=.;5);
Trace[a[b]=2,TraceOriginal->True]
Out[2]= {a[b]=2,{Set},{2},a[b]=2,{With[{JLink`Private`obj$=a},RuleCondition[$ConditionHold[$ConditionHold[JLink`CallJava`Private`setField[JLink`Private`obj$[b],2]]],Head[JLink`Private`obj$]===Symbol&&StringMatchQ[Context[JLink`Private`obj$],JLink`Objects`*]]],{With},With[{JLink`Private`obj$=a},RuleCondition[$ConditionHold[$ConditionHold[JLink`CallJava`Private`setField[JLink`Private`obj$[b],2]]],Head[JLink`Private`obj$]===Symbol&&StringMatchQ[Context[JLink`Private`obj$],JLink`Objects`*]]],{a,a=.;5,{CompoundExpression},a=.;5,{a=.,{Unset},a=.,Null},{5},5},RuleCondition[$ConditionHold[$ConditionHold[JLink`CallJava`Private`setField[5[b],2]]],Head[5]===Symbol&&StringMatchQ[Context[5],JLink`Objects`*]],{RuleCondition},{Head[5]===Symbol&&StringMatchQ[Context[5],JLink`Objects`*],{And},Head[5]===Symbol&&StringMatchQ[Context[5],JLink`Objects`*],{Head[5]===Symbol,{SameQ},{Head[5],{Head},{5},Head[5],Integer},{Symbol},Integer===Symbol,False},False},RuleCondition[$ConditionHold[$ConditionHold[JLink`CallJava`Private`setField[5[b],2]]],False],Fail},a[b]=2,{a[b],{a},{b},a[b]},2}
I was very surprised to see calls to Java in such a pure language-related operation as assigning a value to a variable. Is it reasonable to use Java for such operations at all?
Todd Gayley (Wolfram Research) has explained this behavior:
At the start, let me point out that in
Mathematica 8, J/Link no longer
overloads Set. An internal kernel
mechanism was created that, among
other things, allows J/Link to avoid
the need for special, er, "tricks"
with Set.
J/Link has overloaded Set from the
very beginning, almost twelve years
ago. This allows it support this
syntax for assigning a value to a Java
field:
javaObject#field = value
The overloaded definition of Set
causes a slowdown in assignments of
the form
_Symbol[_Symbol] = value
Of course, assignment is a fast
operation, so the slowdown is small in
real terms. Only highly specialized
types of programs are likely to be
significantly affected.
The Set overload does not cause a
call to Java on assignments that do
not involve Java objects (this would
be very costly). This can be verified
with a simple use of TracePrint on
your a[b]=c.
It does, as you note, make a slight
change in the behavior of assignments
that match _Symbol[_Symbol] = value.
Specifically, in f[_Symbol] = value, f
gets evaluated twice. This can cause
problems for code with the following
(highly unusual) form:
f := SomeProgramWithSideEffects[]
f[x] = 42
I cannot recall ever seeing "real"
code like this, or seeing a problem
reported by a user.
This is all moot now in 8.0.
Taking the case of UpSet first, this is expected behavior. One can write:
5[b] ^= 1
The assignment is made to b not the Integer 5.
Regarding Set and SetDelayed, while these have Hold attributes, they still internally evaluate expressions. This allows things such as:
p = n : (_List | _Integer | All);
f[p] := g[n]
Test:
f[25]
f[{0.1, 0.2, 0.3}]
f[All]
g[25]
g[{0.1, 0.2, 0.3}]
g[All]
One can see that heads area also evaluated. This is useful at least for UpSet:
p2 = head : (ff | gg);
p2[x] ^:= Print["Echo ", head];
ff[x]
gg[x]
Echo ff
Echo gg
It is easy to see that it happens also with Set, but less clear to me how this would be useful:
j = k;
j[5] = 3;
DownValues[k]
(* Out= {HoldPattern[k[5]] :> 3} *)
My analysis of the first part of your question was wrong. I cannot at the moment see why a[b] = 2 is accepted and a[1] = 2 is not. Perhaps at some stage of assignment the second one appears as 5[1] = 2 and a pattern check sets off an error because there are no Symbols on the LHS.
The behavour you show appears to be a bug in 7.0.1 (and possibly earlier) that was fixed in Mathematica 8. In Mathematica 8, both of your original a[b] = 2 and a[1] = 2 examples give the Set::write ... is protected error.
The problem appears to stem from the JLink-related down-value of Set that you identified. That rule implements the JLink syntax used to assign a value to the field of a Java object, e.g. object#field = value.
Set in Mathematica 8 does not have that definition. We can forcibly re-add a similar definition, thus:
Unprotect[Set]
HoldPattern[sym_Symbol[arg_Symbol]=val_] :=
With[{obj=sym}
, setField[obj[arg], val] /; Head[obj] === Symbol && StringMatchQ[Context[obj],"Something`*"]
]
After installing this definition in Mathematica 8, it now exhibits the same inconsistent behaviour as in Mathematica 7.
I presume that JLink object field assignment is now accomplished through some other means. The problematic rule looks like it potentially adds costly Head and StringMatchQ tests to every evaluation of the form a[b] = .... Good riddance?
Lets say, that problems are fairly simple - something, that pre-degree theoretical physics student would solve. And student does the hardest part of the task - functional reading: parsing linguistically free form text, to get input and output variables and input variable values.
For example: a problem about kinematic equations, where there are variables {a,d,t,va,vf} and few functions that describe, how thy are dependent of each-other. So using skills acquired in playing fitting blocks where thy fit, you play with the equations to get the output variable you where looking for.
In any case, there are exactly 2 possible outputs you might want and thy are (with working example):
1) Equation for that variable
Physics[have_, find_] := Solve[Flatten[{
d == vf * t - (a * t^2) /2, (* etc. *)
have }], find]
Physics[True, {d}]
{{d -> (1/2)*(2*t*vf - a*t^2)}}
2) Exact or general numerical value for that variable
Physics[have_, find_] := Solve[Flatten[{
d == vf * t - (a * t^2) /2, (* etc. *)
have }], find]
Physics[{t == 9.7, vf == -104.98, a == -9.8}, {d}]
{{d->-557.265}}
I am not sure, that I am approaching the problem correctly.
I think that I would probably prefer an approach like
In[1]:= Physics[find_, have_:{}] := Solve[
{d == vf*t - (a*t^2)/2 (* , etc *)} /. have, find]
In[2]:= Physics[d]
Out[2]= {{d -> 1/2 (-a t^2 + 2 t vf)}}
In[2]:= Physics[d, {t -> 9.7, vf -> -104.98, a -> -9.8}]
Out[2]= {{d -> -557.265}}
Where the have variables are given as a list of replacement rules.
As an aside, in these types of physics problems, a nice thing to do is define your physical constants like
N[g] = -9.8;
which produces a NValues for g. Then
N[tf] = 9.7;N[vf] = -104.98;
Physics[d, {t -> tf, vf -> vf, a -> g}]
%//N
produces
{{d->1/2 (-g tf^2+2 tf vf)}}
{{d->-557.265}}
Let me show some advanges of Simon's approach:
You are at least approaching this problem reasonably. I see a fine general purpose function and I see you're getting results, which is what matters primarily. There is no 'correct' solution, since there might be a large range of acceptable solutions. In some scenario's some solutions may be preferred over others, for instance because of performance, while that might be the other way around in other scenarios.
The only slight problem I have with your example is the dubious parametername 'have'.
Why do you think this would be a wrong approach?
I generate very long and complex analytic expressions of the general form:
(...something not so complex...)(...ditto...)(...ditto...)...lots...
When I try to use Simplify, Mathematica grinds to a halt, I am assuming due to the fact that it tries to expand the brackets and or simplify across different brackets. The brackets, while containing long expressions, are easily simplified by Mathematica on their own. Is there some way I can limit the scope of Simplify to a single bracket at a time?
Edit: Some additional info and progress.
So using the advice from you guys I have now started using something in the vein of
In[1]:= trouble = Log[(x + I y) (x - I y) + Sqrt[(a + I b) (a - I b)]];
In[2]:= Replace[trouble, form_ /; (Head[form] == Times) :> Simplify[form],{3}]
Out[2]= Log[Sqrt[a^2 + b^2] + (x - I y) (x + I y)]
Changing Times to an appropriate head like Plus or Power makes it possible to target the simplification quite accurately. The problem / question that remains, though, is the following: Simplify will still descend deeper than the level specified to Replace, e.g.
In[3]:= Replace[trouble, form_ /; (Head[form] == Plus) :> Simplify[form], {1}]
Out[3]= Log[Sqrt[a^2 + b^2] + x^2 + y^2]
simplifies the square root as well.
My plan was to iteratively use Replace from the bottom up one level at a time, but this clearly will result in vast amount of repeated work by Simplify and ultimately result in the exact same bogging down of Mathematica I experienced in the outset. Is there a way to restrict Simplify to a certain level(s)?
I realize that this sort of restriction may not produce optimal results, but the idea here is getting something that is "good enough".
There are a number of ways you can do this, but it can be a little tricky and depends on the structure of your actual expression. However, usually a product of a number of terms in brackets will have the head Times, and you can use FullForm to verify this:
In[1]:= FullForm[(a+b)(c+d)]
Out[1]= Times[Plus[a, b], Plus[c, d]]
You can use the higher-order function Map with expressions with head Times the same way you use it with expressions with head List, and that may allow you to Simplify the expression one term at a time, like so:
Map[Simplify, yourGinormousExpression]
You can use Expand on the result if you need to subsequently expand out the brackets.
EDIT to add: If you want to specify the forms that you do want to simplify, you can use Replace or ReplaceAll instead of one of the relatives of Map. Replace is particularly useful because it takes a level specification, allowing you to only affect the factors in the topmost product. As a simple example, consider the following:
In[1]:= expr = Sqrt[(a + 1)/a] Sqrt[(b + 1)/b];
In[2]:= Simplify[expr]
Out[2]= Sqrt[1 + 1/a] Sqrt[1 + 1/b]
If you don't want to simplify factors that depend on a. you can do this instead:
In[3]:= Replace[expr, form_ /; FreeQ[form, a] :> Simplify[form], {1}]
Out[3]= Sqrt[(1 + a)/a] Sqrt[1 + 1/b]
Only the second term, which depends on b, has been changed. One thing to bear in mind though is that some transformations are done automatically by Times or Plus; for instance a + a will be turned into 2 a even without use of Simplify.
I beg to differ with my colleagues, in that using Map to apply Simplify to each subexpression may not save any time as it will still be applied to each one. Instead try, MapAt, as follows:
In[1]:= MapAt[f, SomeHead[a,b,c,d], {4}]
Out[1]:= SomeHead[a, b, c, f[d]]
The tricky part is determining the position specification. Although, if the expression you want to simplify is at the first level, it shouldn't be any more difficult then what I've written above.
Now if you would still like to simplify everything, but you wish to preserve some structure, try using the option ExcludedForms. In the past, I've used to prevent this simplification:
In[2]:= Simplify[d Exp[I (a + b)] Cos[c/2]]
Out[2]:= Exp[I(a + b + c)](d + d Exp[c])
which Mathematica seems to like, so I do
In[3]:= Simplify[d Exp[I (a + b)] Cos[c/2], ExcludedForms -> {_Cos,_Sin}]
Out[3]:= d Exp[I (a + b)] Cos[c/2]
Also, don't forget that the second parameter for Simplify is for assumptions, and can greatly ease your struggles in getting your expressions into a useful form.
You should try Map.
In general, Map[foo, G[a, b, c, ...]] gives G[foo[a], foo[b], foo[c], ...] for any head G and any expression foo, so for
Map[Simplify, a b c d e]
it gives
Simplify[a] Simplify[b] Simplify[c] Simplify[d] Simplify[e]
Note you can denote Map[foo, expr] als foo /# expr if you find that more convenient.