Database to store sparse matrix - ruby

I have a very large and very sparse matrix, composed of only 0s and 1s. I then basically handle (row-column) pairs. I have at most 10k pairs per row/column.
My needs are the following:
Parallel insertion of (row-column) pairs
Quick retrieval of an entire row or column
Quick querying the existence of a (row-column) pair
A Ruby client if possible
Are there existing databases adapted for these kind of constraints?
If not, what would get me the best performance :
A SQL database, with a table like this:
row(indexed) | column(indexed) (but the indexes would have to be constantly refreshed)
A NoSQL key-value store, with two tables like this:
row => columns ordered list
column => rows ordered list
(but with parallel insertion of elements to the lists)
Something else
Thanks for your help!

A sparse 0/1 matrix sounds to me like an adjacency matrix, which is used to represent a graph. Based on that, it is possible that you are trying to solve some graph problem and a graph database would suit your needs.
Graph databases, like Neo4J, are very good for fast traversal of the graph, because retrieving the neighbors of an vertex takes O(number of neighbors of a given vertex), so it is not related to the number of vertices in the whole graph. Neo4J is also transactional, so parallel insertion is not a problem. You can use the REST API wrapper in MRI Ruby, or a JRuby library for more seamless integration.
On the other hand, if you are trying to analyze the connections in the graph, and it would be enough to do that analysis once in a while and just make the results available, you could try your luck with a framework for graph processing based on Google Pregel. It's a little bit like Map-Reduce, but aimed toward graph processing. There are already several open source implementations of that paper.
However, if a graph database, or graph processing framework does not suit your needs, I recommend taking a look at HBase, which is an open-source, column-oriented data store based on Google BigTable. It's data model is in fact very similar to what you described (a sparse matrix), it has row-level transactions, and does not require you to retrieve the whole row, just to check if a certain pair exists. There are some Ruby libraries for that database, but I imagine that it would be safer to use JRuby instead of MRI for interacting with it.

If your matrix is really sparse (i.e. the nodes only have a few interconnections) then you would get reasonably efficient storage from a RDBMS such as Oracle, PostgreSQL or SQL Server. Essentially you would have a table with two fields (row, col) and an index or key each way.
Set up the primary key one way round (depending on whether you mostly query by row or column) and make another index on the fields the other way round. This will only store data where a connection exists, and it will be proportional to the number ot edges in the graph.
The indexes will allow you to efficiently retrieve either a row or column, and will always be in sync.
If you have 10,000 nodes and 10 connections per node the database will only have 100,000 entries. 100 ednges per node will have 1,000,000 entries and so on. For sparse connectivity this should be fairly efficient.
A back-of-fag-packet estimate
This table will essentially have a row and column field. If the clustered index goes (row, column, value) then the other covering index would go (column, row, value). If the additions and deletions were random (i.e. not batched by row or column), the I/O would be approximatley double that for just the table.
If you batched the inserts by row or column then you would get less I/O on one of the indexes as the records are physically located together in one of the indexes. If the matrix really is sparse then this adjacency list representation is by far the most compact way to store it, which will be much faster than storing it as a 2D array.
A 10,000 x 10,000 matrix with a 64 bit value would take 800MB plus the row index. Updating one value would require a write of at least 80k for each write (writing out the whole row). You could optimise writes by rows if your data can be grouped by rows on inserts. If the inserts are realtime and random, then you will write out an 80k row for each insert.
In practice, these writes would have some efficiency because the would all be written out in a mostly contiguous area, depending on how your NoSQL platform physically stored its data.
I don't know how sparse your connectivity is, but if each node had an average of 100 connections, then you would have 1,000,000 records. This would be approximately 16 bytes per row (Int4 row, Int4 column, Double value) plus a few bytes overhead for both the clustered table and covering index. This structure would take around 32MB + a little overhead to store.
Updating a single record on a row or column would cause two single disk block writes (8k, in practice a segment) for random access, assuming the inserts aren't row or column ordered.
Adding 1 million randomly ordered entries to the array representation would result in approximately 80GB of writes + a little overhead. Adding 1m entries to the adjacency list representation would result in approximately 32MB of writes (16GB in practice because the whole block will be written for each index leaf node), plus a little overhead.
For that level of connectivity (10,000 nodes, 100 edges per node) the adjacency list will
be more efficient in storage space, and probably in I/O as well. You will get some optimisation from the platform, so some sort of benchmark might be appropriate to see which is faster in practice.

Related

How to partition a file to smaller size for performing KNN in hadoop mapreduce

In KNN like algorithm we need to load model Data into cache for predicting the records.
Here is the example for KNN.
So if the model will be a large file say1 or 2 GB we will be able to load them into Distributed cache.
Example:
Inorder to predict 1 otcome, we need to find the distnce between that single record with all the records in model result and find the min distance. So we need to get the model result in our hands. And if it is large file it cannot be loaded into Distributed cache for finding distance.
The one way is to split/partition the model Result into some files and perform the distance calculation for all records in that file and then find the min ditance and max occurance of classlabel and predict the outcome.
How can we parttion the file and perform the operation on these partition ?
ie 1 record <Distance> file1,file2,....filen
2nd record <Distance> file1,file2,...filen
This is what came to my thought.
Is there any further way.
Any pointers would help me.
I think the way you partitionin the data mainly depends on your data itself.
Being that you have a model with a bunch of rows, and that you want to find the k closes ones to the data on your input, the trivial solution is to compare them one by one. This can be slow because of going through 1-2GB of data millions of times (I assume you have large numbers of records that you want to classify, otherwise you don't need hadoop).
That is why you need to prune your model efficiently (your partitioning) so that you can compare only those rows that are most likely to be the closest. This is a hard problem and requires knowledge of the data you operate on.
Additional tricks that you can use to fish out performance are:
Pre-sorting the input data so that the input items that will be compared from the same partition come together. Again depends on the data you operate on.
Use random access indexed files (like Hadoop's Map files) to find the data faster and cache it.
In the end it may actually be easier for your model to be stored in lucene index, so you can achieve effects of partitioning by looking up the index. Pre-sorting the data is still helpful there.

What is the best way to analyse a large dataset with similar records?

Currently I am loooking for a way to develop an algorithm which is supposed to analyse a large dataset (about 600M records). The records have parameters "calling party", "called party", "call duration" and I would like to create a graph of weighted connections among phone users.
The whole dataset consists of similar records - people mostly talk to their friends and don't dial random numbers but occasionaly a person calls "random" numbers as well. For analysing the records I was thinking about the following logic:
create an array of numbers to indicate the which records (row number) have already been scanned.
start scanning from the first line and for the first line combination "calling party", "called party" check for the same combinations in the database
sum the call durations and divide the result by the sum of all call durations
add the numbers of summed lines into the array created at the beginning
check the array if the next record number has already been summed
if it has already been summed then skip the record, else perform step 2
I would appreciate if anyone of you suggested any improvement of the logic described above.
p.s. the edges are directed therefore the (calling party, called party) is not equal to (called party, calling party)
Although the fact is not programming related I would like to emphasize that due to law and respect for user privacy all the informations that could possibly reveal the user identity have been hashed before the analysis.
As always with large datasets the more information you have about the distribution of values in them the better you can tailor an algorithm. For example, if you knew that there were only, say, 1000 different telephone numbers to consider you could create a 1000x1000 array into which to write your statistics.
Your first step should be to analyse the distribution(s) of data in your dataset.
In the absence of any further information about your data I'm inclined to suggest that you create a hash table. Read each record in your 600M dataset and calculate a hash address from the concatenation of calling and called numbers. Into the table at that address write the calling and called numbers (you'll need them later, and bear in mind that the hash is probably irreversible), add 1 to the number of calls and add the duration to the total duration. Repeat 600M times.
Now you have a hash table which contains the data you want.
Since there are 600 M records, it seems to be large enough to leverage a database (and not too large to require a distributed Database). So, you could simply load this into a DB (MySQL, SQLServer, Oracle, etc) and run the following queries:
select calling_party, called_party, sum(call_duration), avg(call_duration), min(call_duration), max (call_duration), count(*) from call_log group by calling_party, called_party order by 7 desc
That would be a start.
Next, you would want to run some Association analysis (possibly using Weka), or perhaps you would want to analyze this information as cubes (possibly using Mondrian/OLAP). If you tell us more, we can help you more.
Algorithmically, what the DB is doing internally is similar to what you would do yourself programmatically:
Scan each record
Find the record for each (calling_party, called_party) combination, and update its stats.
A good way to store and find records for (calling_party, called_party) would be to use a hashfunction and to find the matching record from the bucket.
Althought it may be tempting to create a two dimensional array for (calling_party, called_party), that will he a very sparse array (very wasteful).
How often will you need to perform this analysis? If this is a large, unique dataset and thus only once or twice - don't worry too much about the performance, just get it done, e.g. as Amrinder Arora says by using simple, existing tooling you happen to know.
You really want more information about the distribution as High Performance Mark says. For starters, it's be nice to know the count of unique phone numbers, the count of unique phone number pairs, and, the mean, variance and maximum of the count of calling/called phone numbers per unique phone number.
You really want more information about the analysis you want to perform on the result. For instance, are you more interested in holistic statistics or identifying individual clusters? Do you care more about following the links forward (determining who X frequently called) or following the links backward (determining who X was frequently called by)? Do you want to project overviews of this graph into low-dimensional spaces, i.e. 2d? Should be easy to indentify indirect links - e.g. X is near {A, B, C} all of whom are near Y so X is sorta near Y?
If you want fast and frequently adapted results, then be aware that a dense representation with good memory & temporal locality can easily make a huge difference in performance. In particular, that can easily outweigh a factor ln N in big-O notation; you may benefit from a dense, sorted representation over a hashtable. And databases? Those are really slow. Don't touch those if you can avoid it at all; they are likely to be a factor 10000 slower - or more, the more complex the queries are you want to perform on the result.
Just sort records by "calling party" and then by "called party". That way each unique pair will have all its occurrences in consecutive positions. Hence, you can calculate the weight of each pair (calling party, called party) in one pass with little extra memory.
For sorting, you can sort small chunks separately, and then do a N-way merge sort. That's memory efficient and can be easily parallelized.

Is a globally partitioned index better (faster) than a non-partitioned index?

I'm interested to find out if there is a performance benefit to partitioning a numeric column that is often the target of a query. Currently I have a materialized view that contains ~50 million records. When using a regular b-tree index and searching by this numeric column I get a cost of 7 and query results in about 0.8 seconds (with non-primed cache). After adding a global hash partition (with 64 partitions) for that column I get a cost of 6 and query results in about 0.2 seconds (again with non-primed cache).
My first reaction is that the partitioned index has improved the performance of my query. However, I realize that this may just be a coincidence and could be totally dependent on the values being searched on, or others I'm not aware of. So my question is: is there a performance benefit to adding a global hash partition to a numeric column on a large table or is the cost of determining which index partitions to scan out-weighed by the cost of just doing a full range scan on a non-indexed partition?
I'm sure this, like many Oracle questions, can be answered with an "it depends." :) I'm interested in learning what factors I should consider to determine the benefits of each approach.
Thanks!
I'm pretty sure you have found this reference in your research - Partitioned Tables and Indexes. However I give a link to it if somebody is interested, this is a very good material about partitioning.
Straight to the point - Partitioned index just decomposes the index into pieces (16 in your situation) and spread the data depending on their hashed partitioning key. When you want to use it, Oracle "calculates" the hash of the key and determine in which section to continue with searching.
Knowing how index searching works, on really huge data I think it is better to choose the partitioned index in order to decrease the index tree you traverse (regular index). It really depends on the data, which is in the table (how regular index tree is composed) and is hashing and direct jump to lower node faster than regular tree traverse from the start node.
Finally, you must be more confident with the test results. If one technique gives better results on your exact data than some other don't worry to implement it.

Amortizing the calculation of distribution (and percentile), applicable on App Engine?

This is applicable to Google App Engine, but not necessarily constrained for it.
On Google App Engine, the database isn't relational, so no aggregate functions (such as sum, average etc) can be implemented. Each row is independent of each other. To calculate sum and average, the app simply has to amortize its calculation by recalculating for each individual new write to the database so that it's always up to date.
How would one go about calculating percentile and frequency distribution (i.e. density)? I'd like to make a graph of the density of a field of values, and this set of values is probably on the order of millions. It may be feasible to loop through the whole dataset (the limit for each query is 1000 rows returned), and calculate based on that, but I'd rather do some smart approach.
Is there some algorithm to calculate or approximate density/frequency/percentile distribution that can be calculated over a period of time?
By the way, the data is indeterminate in that the maximum and minimum may be all over the place. So the distribution would have to take approximately 95% of the data and only do a density based on that.
Getting the whole row (with that limit of 1000 at a time...) over and over again in order to get a single number per row is sure unappealing. So denormalize the data by recording that single number in a separate entity that holds a list of numbers (to a limit of I believe 1 MB per query, so with 4-byte numbers no more than 250,000 numbers per list).
So when adding a number also fetch the latest "added data values list" entity, if full make a new one instead, append the new number, save it. Probably no need to be transactional if a tiny error in the statistics is no killer, as you appear to imply.
If the data for an item can be changed have separate entities of the same kind recording the "deleted" data values; to change one item's value from 23 to 45, add 23 to the latest "deleted values" list, and 45 to the latest "added values" one -- this covers item deletion as well.
It may be feasible to loop through the whole dataset (the limit for each query is 1000 rows returned), and calculate based on that, but I'd rather do some smart approach.
This is the most obvious approach to me, why are you are you trying to avoid it?

Random distribution of data

How do I distribute a small amount of data in a random order in a much larger volume of data?
For example, I have several thousand lines of 'real' data, and I want to insert a dozen or two lines of control data in a random order throughout the 'real' data.
Now I am not trying to ask how to use random number generators, I am asking a statistical question, I know how to generate random numbers, but my question is how do I ensure that this the data is inserted in a random order while at the same time being fairly evenly scattered through the file.
If I just rely on generating random numbers there is a possibility (albeit a very small one) that all my control data, or at least clumps of it, will be inserted within a fairly narrow selection of 'real' data. What is the best way to stop this from happening?
To phrase it another way, I want to insert control data throughout my real data without there being a way for a third party to calculate which rows are control and which are real.
Update: I have made this a 'community wiki' so if anyone wants to edit my question so it makes more sense then go right ahead.
Update: Let me try an example (I do not want to make this language or platform dependent as it is not a coding question, it is a statistical question).
I have 3000 rows of 'real' data (this amount will change from run to run, depending on the amount of data the user has).
I have 20 rows of 'control' data (again, this will change depending on the number of control rows the user wants to use, anything from zero upwards).
I now want to insert these 20 'control' rows roughly after every 150 rows or 'real' data has been inserted (3000/20 = 150). However I do not want it to be as accurate as that as I do not want the control rows to be identifiable simply based on their location in the output data.
Therefore I do not mind some of the 'control' rows being clumped together or for there to be some sections with very few or no 'control' rows at all, but generally I want the 'control' rows fairly evenly distributed throughout the data.
There's always a possibility that they get close to each other if you do it really random :)
But What I would do is:
You have N rows of real data and x of control data
To get an index of a row you should insert i-th control row, I'd use: N/(x+1) * i + r, where r is some random number, diffrent for each of the control rows, small compared to N/x. Choose any way of determining r, it can be either gaussian or even flat distribution. i is an index of the control row, so it's 1<=i<x
This way you can be sure that you avoid condensation of your control rows in one single place. Also you can be sure that they won't be in regular distances from each other.
Here's my thought. Why don't you just loop through the existing rows and "flip a coin" for each row to decide whether you will insert random data there.
for (int i=0; i<numberOfExistingRows; i++)
{
int r = random();
if (r > 0.5)
{
InsertRandomData();
}
}
This should give you a nice random distribution throughout the data.
Going with the 3000 real data rows and 20 control rows for the following example (I'm better with example than with english)
If you were to spread the 20 control rows as evenly as possible between the 3000 real data rows you'd insert one at each 150th real data row.
So pick that number, 150, for the next insertion index.
a) Generate a random number between 0 and 150 and subtract it from the insertion index
b) Insert the control row there.
c) Increase insertion index by 150
d) Repeat at step a)
Of course this is a very crude algorithm and it needs a few improvements :)
If the real data is large or much larger than the control data, just generate interarrival intervals for your control data.
So pick a random interval, copy out that many lines of real data, insert control data, repeat until finished. How to pick that random interval?
I'd recommend using a gaussian deviate with mean set to the real data size divided by the control data size, the former of which could be estimated if necessary, rather than measured or assumed known. Set the standard deviation of this gaussian based on how much "spread" you're willing to tolerate. Smaller stddev means a more leptokurtic distribution means tighter adherence to uniform spacing. Larger stdev means a more platykurtic distribution and looser adherence to uniform spacing.
Now what about the first and last sections of the file? That is: what about an insertion of control data at the very beginning or very end? One thing you can do is to come up with special-case estimates for these... but a nice trick is as follows: start your "index" into the real data at minus half the gaussian mean and generate your first deviate. Don't output any real data until your "index" into the real data is legit.
A symmetric trick at the end of the data should also work quite well (simply: keep generating deviates until you reach an "index" at least half the gaussian mean beyond the end of the real data. If the index just before this was off the end, generate data at the end.
You want to look at more than just statistics: it's helpful in developing an algorithm for this sort of thing to look at rudimentary queueing theory. See wikipedia or the Turing Omnibus, which has a nice, short chapter on the subject whose title is "Simulation".
Also: in some circumstance non-gaussian distributions, particularly the Poisson distribution, give better, more natural results for this sort of thing. The algorithm outline above still applies using half the mean of whatever distribution seems right.

Resources