Association mining with large number of small datasets - algorithm

I have a large number (100-150) of small (approx 1 kbyte) datasets.
We will call these the 'good' datasets.
I also have a similar number of 'bad' datasets.
Now I'm looking for software (or perhaps algorithm(s)) to find rules for what constitutes a 'good' dataset versus a 'bad' dataset.
The important thing here is the software's ability to deal with the multiple datasets rather than just one large one.
Help much appreciated.
Paul.

It seems like a classification problem. If you have many datasets labelled as "good" or "bad" you can train a classifier to predict if a new dataset is good or bad.
Algorithms such as decision tree, k-nearest neighboor, SVM, neural networks are potential tools that you could use.
However, you need to determine which attributes you will use to train the classifier.

One common way to do it is using the k-nearest neighbor.
Extract fields from your data set, for example - if your dataset is a text, a common way to extract fields is using the bag of words.
Store the "training set", and when a new dataset [which is not labled] arrives - find the k nearest beighbors to it [according to the extracted fields]. Lable the new dataset like the most k nearest neighbors [from training set] of it.
Another common method is using a decision tree. The problem with decision trees - don't make the decisioning too specific. An existing algorithm which might use to create a good [heuristically] tree is ID3

Related

Classifying Multivariate Time Series

I currently am working on a time series witch 430 attributes and approx. 80k instances. Now I would like to binary classify each instance (not the whole ts). Everything I found about classifying TS talked about labeling the whole thing.
Is it possible to classify each instance with something like a SVM completely disregarding the sequential nature of the data or would that only result in a really bad classifier?
Which other options are there which classify each instance but still look at the data as a time series?
If the data is labeled, you may have luck by concatenating attributes together, so each instance becomes a single long time series, and by applying the so-called Shapelet Transform. This would result in a vector of values for each of time series which can be fed into SVM, Random Forest, or any other classifier. It could be that picking a right shapelets will allow you to focus on a single attribute when classifying instances.
If it is not labeled, you may try the unsupervised shapelets application first to explore your data and proceed with aforementioned shapelet transform after.
It certainly depends on the data within the 430 attributes,
data types, and especially the problem you want to solve.
In time series analysis, you usually want to exploit the dependencies between the neighboring points, i.e., how they change in time. The examples you may find in books usually talk about a single function f(t): Time -> Real. If I understand it correctly, you want to focus just on the dependencies among the 430 attributes (vertical dependencies) and disregard the horizontal dependencies.
If I were you, I would first try to train multiple classifiers (SVM, Maximum entropy model, Multi-layer perceptron, Random forest, Probabilistic Neural Network, ...) and compare their prediction performance in the frame of your problem.
For training, you can start by feeding all 430 attributes as features to Maxent classifier (can easily handle millions of features).
You also need to perform some N-fold cross-validation to see whether the classifiers are not overfitted. Then pick the best that solves your problem "good enough".
Other ideas if this approach does not perform well:
include features from t-1, t-2...
perform feature selection by trying different subsets of features
derive new time series such as moving averages, wavelet spectrum ... and use them as new features
A nice implementation of Maxent classifier can be found in openNLP.

Mathematically how does one compare classification result to clustering results

Is there a standard methodology to compare results (for accuracy) of a classification algorithm against a clustering algorithm? I have data that has only two true labels. Easy enough to check accuracy when I run a binary classification on it, but if I run clustering, where I ask it to cluster the data into 5 groups, how can I check the accuracy and compare it to the binary classification. I know clustering is not suitable for (two label) data but how can one prove this mathematically?
Clustering into more than two clusters is one way to do 2-class classification (just pick which ever label is more common in each cluster to be the predicted label for the cluster). However it's a very strange approach because it ignores the labels until the very end after the clustering is computed. Supervised learning (i.e. classification) provides much more powerful tools like random forests for classification.
Don't approach clustering as classification
They have very different objectives, and really should not be compared. Classification is about reproducing known labels, and you need to pay attention to overfitting, train/test splitting etc. Clustering on the other hand is exploratory. Any truly exploratory method will eventually not find anything, or will turn up obvious results only.
By trying to evaluate it the same way as classification, you "overfit" to clustering methods that yield the obvious, if anything.
Instead, evaluate Clustering by looking at the results. If you learn something from the result, then it was good. If not, try again.
Don't try to stick a number on everything
There is more than black, white, and 50 shades of grey. Putting everything into a single number is a grayscale view of the world... it's popular (so is "good vs. evil" thinking); but in science we should do better.

Finding an optimum learning rule for an ANN

How do you find an optimum learning rule for a given problem, say a multiple category classification?
I was thinking of using Genetic Algorithms, but I know there are issues surrounding performance. I am looking for real world examples where you have not used the textbook learning rules, and how you found those learning rules.
Nice question BTW.
classification algorithms can be classified using many Characteristics like:
What does the algorithm strongly prefer (or what type of data that is most suitable for this algorithm).
training overhead. (does it take a lot of time to be trained)
When is it effective. ( large data - medium data - small amount of data ).
the complexity of analyses it can deliver.
Therefore, for your problem classifying multiple categories I will use Online Logistic Regression (FROM SGD) because it's perfect with small to medium data size (less than tens of millions of training examples) and it's really fast.
Another Example:
let's say that you have to classify a large amount of text data. then Naive Bayes is your baby. because it strongly prefers text analysis. even that SVM and SGD are faster, and as I experienced easier to train. but these rules "SVM and SGD" can be applied when the data size is considered as medium or small and not large.
In general any data mining person will ask him self the four afomentioned points when he wants to start any ML or Simple mining project.
After that you have to measure its AUC, or any relevant, to see what have you done. because you might use more than just one classifier in one project. or sometimes when you think that you have found your perfect classifier, the results appear to be not good using some measurement techniques. so you'll start to check your questions again to find where you went wrong.
Hope that I helped.
When you input a vector x to the net, the net will give an output depend on all the weights (vector w). There would be an error between the output and the true answer. The average error (e) is a function of the w, let's say e = F(w). Suppose you have one-layer-two-dimension network, then the image of F may look like this:
When we talk about training, we are actually talking about finding the w which makes the minimal e. In another word, we are searching the minimum of a function. To train is to search.
So, you question is how to choose the method to search. My suggestion would be: It depends on how the surface of F(w) looks like. The wavier it is, the more randomized method should be used, because the simple method based on gradient descending would have bigger chance to guide you trapped by a local minimum - so you lose the chance to find the global minimum. On the another side, if the suface of F(w) looks like a big pit, then forget the genetic algorithm. A simple back propagation or anything based on gradient descending would be very good in this case.
You may ask that how can I know how the surface look like? That's a skill of experience. Or you might want to randomly sample some w, and calculate F(w) to get an intuitive view of the surface.

Appropriate clustering method for 1 or 2 dimensional data

I have a set of data I have generated that consists of extracted mass (well, m/z but that not so important) values and a time. I extract the data from the file, however, it is possible to get repeat measurements and this results in a large amount of redundancy within the dataset. I am looking for a method to cluster these in order to group those that are related based on either similarity in mass alone, or similarity in mass and time.
An example of data that should be group together is:
m/z time
337.65 1524.6
337.65 1524.6
337.65 1604.3
However, I have no way to determine how many clusters I will have. Does anyone know of an efficient way to accomplish this, possibly using a simple distance metric? I am not familiar with clustering algorithms sadly.
http://en.wikipedia.org/wiki/Cluster_analysis
http://en.wikipedia.org/wiki/DBSCAN
Read the section about hierarchical clustering and also look into DBSCAN if you really don't want to specify how many clusters in advance. You will need to define a distance metric and in that step is where you would determine which of the features or combination of features you will be clustering on.
Why don't you just set a threshold?
If successive values (by time) do not differ by at least +-0.1 (by m/s) they a grouped together. Alternatively, use a relative threshold: differ by less than +- .1%. Set these thresholds according to your domain knowledge.
That sounds like the straightforward way of preprocessing this data to me.
Using a "clustering" algorithm here seems total overkill to me. Clustering algorithms will try to discover much more complex structures than what you are trying to find here. The result will likely be surprising and hard to control. The straightforward change-threshold approach (which I would not call clustering!) is very simple to explain, understand and control.
For the simple one dimension K-means clustering (http://en.wikipedia.org/wiki/K-means_clustering#Standard_algorithm) is appropriate and can be used directly. The only issue is selecting appropriate K. The best way to select a good K is to either plot K vs residual variance and select the K that "dramatically" reduces variance. Another strategy is to use some information criteria (eg. Bayesian Information Criteria).
You can extend K-Means to multi-dimensional data easily. But you should be beware of scaling the individual dimensions. Eg. Among items (1KG, 1KM) (2KG, 2KM) the nearest point to (1.7KG, 1.4KM) is (2KG, 2KM) with these scales. But once you start expression second item in meters, probably the alternative is true.

Is Latent Semantic Indexing (LSI) a Statistical Classification algorithm?

Is Latent Semantic Indexing (LSI) a Statistical Classification algorithm? Why or why not?
Basically, I'm trying to figure out why the Wikipedia page for Statistical Classification does not mention LSI. I'm just getting into this stuff and I'm trying to see how all the different approaches for classifying something relate to one another.
No, they're not quite the same. Statistical classification is intended to separate items into categories as cleanly as possible -- to make a clean decision about whether item X is more like the items in group A or group B, for example.
LSI is intended to show the degree to which items are similar or different and, primarily, find items that show a degree of similarity to an specified item. While this is similar, it's not quite the same.
LSI/LSA is eventually a technique for dimensionality reduction, and usually is coupled with a nearest neighbor algorithm to make it a into classification system. Hence in itself, its only a way of "indexing" the data in lower dimension using SVD.
Have you read about LSI on Wikipedia ? It says it uses matrix factorization (SVD), which in turn is sometimes used in classification.
The primary distinction in machine learning is between "supervised" and "unsupervised" modeling.
Usually the words "statistical classification" refer to supervised models, but not always.
With supervised methods the training set contains a "ground-truth" label that you build a model to predict. When you evaluate the model, the goal is to predict the best guess at (or probability distribution of) the true label, which you will not have at time of evaluation. Often there's a performance metric and it's quite clear what the right vs wrong answer is.
Unsupervised classification methods attempt to cluster a large number of data points which may appear to vary in complicated ways into a smaller number of "similar" categories. Data in each category ought to be similar in some kind of 'interesting' or 'deep' way. Since there is no "ground truth" you can't evaluate 'right or wrong', but 'more' vs 'less' interesting or useful.
Similarly evaluation time you can place new examples into potentially one of the clusters (crisp classification) or give some kind of weighting quantifying how similar or different looks like the "archetype" of the cluster.
So in some ways supervised and unsupervised models can yield something which is a "prediction", prediction of class/cluster label, but they are intrinsically different.
Often the goal of an unsupervised model is to provide more intelligent and powerfully compact inputs for a subsequent supervised model.

Resources