Appropriate clustering method for 1 or 2 dimensional data - algorithm

I have a set of data I have generated that consists of extracted mass (well, m/z but that not so important) values and a time. I extract the data from the file, however, it is possible to get repeat measurements and this results in a large amount of redundancy within the dataset. I am looking for a method to cluster these in order to group those that are related based on either similarity in mass alone, or similarity in mass and time.
An example of data that should be group together is:
m/z time
337.65 1524.6
337.65 1524.6
337.65 1604.3
However, I have no way to determine how many clusters I will have. Does anyone know of an efficient way to accomplish this, possibly using a simple distance metric? I am not familiar with clustering algorithms sadly.

http://en.wikipedia.org/wiki/Cluster_analysis
http://en.wikipedia.org/wiki/DBSCAN
Read the section about hierarchical clustering and also look into DBSCAN if you really don't want to specify how many clusters in advance. You will need to define a distance metric and in that step is where you would determine which of the features or combination of features you will be clustering on.

Why don't you just set a threshold?
If successive values (by time) do not differ by at least +-0.1 (by m/s) they a grouped together. Alternatively, use a relative threshold: differ by less than +- .1%. Set these thresholds according to your domain knowledge.
That sounds like the straightforward way of preprocessing this data to me.
Using a "clustering" algorithm here seems total overkill to me. Clustering algorithms will try to discover much more complex structures than what you are trying to find here. The result will likely be surprising and hard to control. The straightforward change-threshold approach (which I would not call clustering!) is very simple to explain, understand and control.

For the simple one dimension K-means clustering (http://en.wikipedia.org/wiki/K-means_clustering#Standard_algorithm) is appropriate and can be used directly. The only issue is selecting appropriate K. The best way to select a good K is to either plot K vs residual variance and select the K that "dramatically" reduces variance. Another strategy is to use some information criteria (eg. Bayesian Information Criteria).
You can extend K-Means to multi-dimensional data easily. But you should be beware of scaling the individual dimensions. Eg. Among items (1KG, 1KM) (2KG, 2KM) the nearest point to (1.7KG, 1.4KM) is (2KG, 2KM) with these scales. But once you start expression second item in meters, probably the alternative is true.

Related

Feature Scaling required or not

I am working with sample data set to learn clustering. This data set contains number of occurrences for the keywords.
Since all are number of occurrences for the different keywords, will it be OK not to scale the values and use them as it is?
I read couple of articles on internet where its emphasized that scaling is important as it will adjust the relativity of the frequency. Since most of frequencies are 0 (95%+), z score scaling will change the shape of distribution, which I am feeling could be problem as I am changing the nature of data.
I am thinking of not changing values at all to avoid this. Will that affect the quality of results I get from the clustering?
As it was already noted, the answer heavily depends on an algorithm being used.
If you're using distance-based algorithms with (usually default) Euclidean distance (for example, k-Means or k-NN), it'll rely more on features with bigger range just because a "typical difference" of values of that feature is bigger.
Non-distance based models can be affected, too. Though one might think that linear models do not get into this category since scaling (and translating, if needed) is a linear transformation, so if it makes results better, then the model should learn it, right? Turns out, the answer is no. The reason is that no one uses vanilla linear models, they're always used with with some sort of a regularization which penalizes too big weights. This can prevent your linear model from learning scaling from data.
There are models that are independent of the feature scale. For example, tree-based algorithms (decision trees and random forests) are not affected. A node of a tree partitions your data into 2 sets by comparing a feature (which splits dataset best) to a threshold value. There's no regularization for the threshold (because one should keep height of the tree small), so it's not affected by different scales.
That being said, it's usually advised to standardize (subtract mean and divide by standard deviation) your data.
Probably it depends on the classification algorithm. I'm only familiar with SVM. Please see Ch. 2.2 for the explanation of scaling
The type of feature (count of words) doesn't matter. The feature ranges should be more or less similar. If the count of e.g. "dignity" is 10 and the count of "have" is 100000000 in your texts, then (at least on SVM) the results of such features would be less accurate as when you scaled both counts to similar range.
The cases, where no scaling is needed are those, where the data is scaled implicitly e.g. features are pixel-values in an image. The data is scaled already to the range 0-255.
*Distance based algorithm need scaling
*There is no need of scaling in tree based algorithms
But it is good to scale your data and train model ,if possible compare the model accuracy and other evaluations before scaling and after scaling and use the best possibility
These is as per my knowledge

How to judge performance of algorithms for Text Clustering?

I am using K-Means algorithm for Text Clustering with initial seeding with K-Means++.
I try to make the algorithm more efficient with some changes like changing the stop-word dictionary and increasing the max_no_of_random_iterations.
I get different results. How do i compare them ? I could not apply the idea of confusion matrix here. Output is not in the form of some document getting some value or tag. A document goes to a set. It is just relative "good clustering" or the set that matters.
So Is there some standard way for marking the performance for this output set ?
If confusion matrix is the answer, please explain how to do it ?
Thanks.
You could decide in advance how to measure the quality of the clusters, for example count how many empty ones or some stats like Within Sum of Squares
This paper says
"... three distinctive approaches to cluster validity are possible.
The first approach relies on external criteria that investigate the
existence of some predefined structure in clustered data set. The
second approach makes use of internal criteria and the clustering
results are evaluated by quantities describing the data set such as
proximity matrix etc. Approaches based on internal and external
criteria make use of statistical tests and their disadvantage is
high computational cost. The third approach makes use of relative
criteria and relies on finding the best clustering scheme that meets
certain assumptions and requires predefined input parameters values"
Since clustering is unsupervised, you are asking for something difficult. I suggest researching how people cluster using genetic algorithms and see what fitness criteria they use.

What are good algorithms for detecting abnormality?

Background
Here is the problem:
A black box outputs a new number each day.
Those numbers have been recorded for a period of time.
Detect when a new number from the black box falls outside the pattern of numbers established over the time period.
The numbers are integers, and the time period is a year.
Question
What algorithm will identify a pattern in the numbers?
The pattern might be simple, like always ascending or always descending, or the numbers might fall within a narrow range, and so forth.
Ideas
I have some ideas, but am uncertain as to the best approach, or what solutions already exist:
Machine learning algorithms?
Neural network?
Classify normal and abnormal numbers?
Statistical analysis?
Cluster your data.
If you don't know how many modes your data will have, use something like a Gaussian Mixture Model (GMM) along with a scoring function (e.g., Bayesian Information Criterion (BIC)) so you can automatically detect the likely number of clusters in your data. I recommend this instead of k-means if you have no idea what value k is likely to be. Once you've constructed a GMM for you data for the past year, given a new datapoint x, you can calculate the probability that it was generated by any one of the clusters (modeled by a Gaussian in the GMM). If your new data point has low probability of being generated by any one of your clusters, it is very likely a true outlier.
If this sounds a little too involved, you will be happy to know that the entire GMM + BIC procedure for automatic cluster identification has been implemented for you in the excellent MCLUST package for R. I have used it several times to great success for such problems.
Not only will it allow you to identify outliers, you will have the ability to put a p-value on a point being an outlier if you need this capability (or want it) at some point.
You could try line fitting prediction using linear regression and see how it goes, it would be fairly easy to implement in your language of choice.
After you fitted a line to your data, you could calculate the mean standard deviation along the line.
If the novel point is on the trend line +- the standard deviation, it should not be regarded as an abnormality.
PCA is an other technique that comes to mind, when dealing with this type of data.
You could also look in to unsuperviced learning. This is a machine learning technique that can be used to detect differences in larger data sets.
Sounds like a fun problem! Good luck
There is little magic in all the techniques you mention. I believe you should first try to narrow the typical abnormalities you may encounter, it helps keeping things simple.
Then, you may want to compute derived quantities relevant to those features. For instance: "I want to detect numbers changing abruptly direction" => compute u_{n+1} - u_n, and expect it to have constant sign, or fall in some range. You may want to keep this flexible, and allow your code design to be extensible (Strategy pattern may be worth looking at if you do OOP)
Then, when you have some derived quantities of interest, you do statistical analysis on them. For instance, for a derived quantity A, you assume it should have some distribution P(a, b) (uniform([a, b]), or Beta(a, b), possibly more complex), you put a priori laws on a, b and you ajust them based on successive information. Then, the posterior likelihood of the info provided by the last point added should give you some insight about it being normal or not. Relative entropy between posterior and prior law at each step is a good thing to monitor too. Consult a book on Bayesian methods for more info.
I see little point in complex traditional machine learning stuff (perceptron layers or SVM to cite only them) if you want to detect outliers. These methods work great when classifying data which is known to be reasonably clean.

Which data clustering algorithm is appropriate to detect an unknown number of clusters in a time series of events?

Here's my scenario. Consider a set of events that happen at various places and times - as an example, consider someone high above recording the lightning strikes in a city during a storm. For my purpose, lightnings are instantaneous and can only hit certain locations (such as high buildings). Also imagine each lightning strike has a unique id so one can reference the strike later. There are about 100,000 such locations in this city (as you guess, this is an analogy as my current employer is sensitive about the actual problem).
For phase 1, my input is the set of (strike id, strike time, strike location) tuples. The desired output is the set of the clusters of more than 1 event that hit the same location within a short time. The number of clusters is not known in advance (so k-means is not that useful here). What is being considered as 'short' could be predefined for a given clustering attempt. That is, I can set it to, say, 3 minutes, than run the algorithm; later try with 4 minutes or 10 minutes. Perhaps a nice touch would be for the algorithm to determine a 'strength' of clustering and recommend that for a given input, the most compact clustering is achieved by using a particular value for 'short', but this is not required initially.
For phase 2, I'd like to take into consideration the amplitude of the strike (i.e., a real number) and look for clusters that are both within a short time and with similar amplitudes.
I googled and checked the answers here about data clustering. The information is a bit bewildering (below is the list of links I found useful). AFAIK, k-means and related algorithms would not be useful because they require the number of clusters to be specified apriori. I'm not asking for someone to solve my problem (I like solving it), but some orientation in the large world of data clustering algorithms would be useful in order to save some time. Specifically, what clustering algorithms are appropriate for when the number of clusters is unknown.
Edit: I realized the location is irrelevant, in the sense that although events happen all the time, I only need to cluster them per location. So each location has its own time-series of events that can thus be analyzed independently.
Some technical details:
- as the dataset is not that large, it can fit all in memory.
- parallel processing is a nice to have, but not essential. I only have a 4-core machine and MapReduce and Hadoop would be too much.
- the language I'm mostly familiar with is Java. I haven't yet used R and the learning curve for it would probably be too much for what time I was given. I'll have a look at it anyway in my spare time.
- for the time being, using tools to run the analysis is ok, I don't have to produce just code. I'm mentioning this because probably Weka will be suggested.
- visualization would be useful. As the dataset is large enough so it doesn't fit in memory, the visualization should at least support zooming and panning. And to clarify: I don't need to build a visualization GUI, it's just a nice capability to use for checking the results produced with a tool.
Thank you. Questions that I found useful are: How to find center of clusters of numbers? statistics problem?, Clustering Algorithm for Paper Boys, Java Clustering Library, How to cluster objects (without coordinates), Algorithm for detecting "clusters" of dots
I would suggest you to look into Mean Shift Clustering. The basic idea behind mean shift clustering is to take the data and perform a kernel density estimation, then find the modes in the density estimate, the regions of convergence of data points towards modes defines the clusters.
The nice thing about mean shift clustering is that the number of clusters do not have to be specified ahead of time.
I have not used Weka, so I am not sure if it has mean shift clustering. However if you are using MATLAB, here is a toolbox (KDE toolbox) to do it. Hope that helps.
Couldn't you just use hierarchical clustering with the difference in times of strikes as part of the distance metric?
It is too late, but still I would add it:
In R, there is a package fpc and it has a method pamk() which provides you the clusters. Using pamk(), you do not need to mention the number of clusters intially. It calculates itself the number of clusters in the input data.

Algorithm for clustering pictures based on date taken

Anyone know of an algorithm that will group pictures into events based on the date the picture was taken. Obviously I can group by the date, but I'd like something a little more sophisticated that would(might) be able to group pictures spanning multiple days based on the frequency over a certain timespan. Consider the following groupings:
1/2/2009 15 photos
1/3/2009 20 photos
1/4/2009 13 photos
1/5/2009 19 photos
1/15/2009 5 photos
Potentially these would be grouped into two groups:
1/2/2009 -> 1/5/2009
1/15/2009
Obviously there will be some tolerance(s) that need to be established.
Is there any well established way of doing this, other then inventing my own top/down approach?
You can apply pretty much any standard clustering technique to this, it's just a matter of defining your distance function correctly. When you are making your matrix of distances between your photos you should consider a combination of physical distance between locations - if you have it - and temporal distance between their creation timestamps. Normalise them and put them on separate dimensions and you may even just be able to take a regular euclidean distance.
Best of luck.
Just group the pictures that were taken on successive days (no days on which no pictures were taken) together.
You might try to dynamically calculate tolerance based on how many or how big (absolute or %) clusters you want to create.
To get a useful clustering of pictures according to date you require the following:
1) The number of clusters should be variable and not fixed a priori to the clustering
2) The diameter of each cluster should not exceed a specific amount.
The clustering algorithm that best satisfies both requirements is the QT (quality threshold) clustering algorithm. From Wikipedia:
QT (quality threshold) clustering
(Heyer, Kruglyak, Yooseph, 1999) is an
alternative method of partitioning
data, invented for gene clustering. It
requires more computing power than
k-means, but does not require
specifying the number of clusters a
priori, and always returns the same
result when run several times.
Although it is mainly used for gene clustering I think it would fit in very well for what you need.
Try to detect the Gaps instead of the Clusters.

Resources