How to generate location independent code using GNU ARM toolchain? - gcc

I am using ARM ELF toolchain for my project. I am working on a bootloader which needs to be location independent as it will relocate it self from flash to ram upon reset. I have tried hard to figure out how to compile location independent code using GNU ARM toolchain but can not seem to make it work.
I have tried using -fpic and -fpie options for the compiler and -pie for linker but when I use these options the compiler complains that no section is defined for either .got or .plt sections. I am not sure where these sections should go i.e in BSS or TEXT. After googling about this, I think I should only use -fpie but I am not sure.
Can someone with experience with this please help me. I am using GNU ARM 4.1.1

you can generate Position Independent Code [PIC] by supplying -mapcs-reentrant option to arm-linux-gnueabi-gcc and -Wa,-K option to fellow assembler.
like:
arm-linux-gnueabi-gcc <other option> -mapcs-reentrant -Wa, -K <other option> files..

Related

GCC gprof complaining GLIBC_2.16 is not found

I have a code running on a PowerPC e500v2 embedded Linux and I want to measure its performance since it is running in an infinite loop. I tried gcc's gprof which was simply by adding -pg option to gcc. When I run the binary on the target device I get this:
./main: /lib/libc.so.6: version GLIBC_2.16 not found (required by ./main)
I am using ELDK 5.6 toolchain with the default CFLAGS and LDFLAGS and these flags: -Wall -lrt -pthread -D_GNU_SOURCE nothing else. Some article suggested defining FORTIFY_SOURCE along with an optimization level but it did not work. I searched for some gcc's feature test macros and tried defining some GLIBC 2.16 specific macros but it did not work.
I faced similar issue with GLIBC 2.17 when I used some structures and functions from <sched.h>, adding _GNU_SOURCE resolved it. Any idea on how to resolve it?
When I run the binary on the target device I get this
Your tool chain targets a version of GLIBC that is newer than what is installed on the target.
This doesn't bite you in non-pg compiles only by accident. An "innocent" change to your source can cause the same problem.
You need to upgrade your target to the version of GLIBC which your toolchain actually builds for.

Cross compiling - Error: selected processor does not support `fmrx r3,fpexc' in ARM mode - Beaglebone

I'm trying to cross-compile a file to flash into the Beaglebone Black.
All works fine, but if I try to enable the FPU with
#define set_en_bit_in_fpexc() do { \
int dummy; \
__asm__ __volatile__ ("fmrx %0,fpexc\n\t" \
"orr %0,%0,#0x40000000\n\t" \
"fmxr fpexc,%0" : "=r" (dummy) : :); \
} while (0)
I get the following error
Error: selected processor does not support `fmrx r3,fpexc' in ARM mode
Error: selected processor does not support `fmxr fpexc,r3' in ARM mode
I also tried with thumb mode, but I get the same errors.
Of course if I remove the part of the code that initialize the FPU it works fine.
Why I get those errors?
Makefile
[...]
CROSSPATH?=/usr/bin
CROSSPFX=$(CROSSPATH)/arm-none-eabi-
CC=$(CROSSPFX)gcc
AS=$(CROSSPFX)as
LD=$(CROSSPFX)ld
NM=$(CROSSPFX)nm
OBJCOPY=$(CROSSPFX)objcopy
OBJDUMP=$(CROSSPFX)objdump
CFLAGS=-Wall -Wextra -O2 -ffreestanding
ARCHFLAGS=-mcpu=cortex-a8 -march=armv7-a -mfpu=neon
CCARCHFLAGS=$(ARCHFLAGS) -marm
[...]
I'm on Arch, kernel 4.8.1
P.S. My professor uses the linaro cross-compiler and it works just fine
Most of the Linaro toolchains are configured for ARMv7 hard-float by default (certainly the Linux ones, I'm less sure about the bare-metal ones). Looking at the configuration of the arm-none-eabi toolchain as packaged by Arch, I surmise it's just using the GCC defaults for things like that, which implies something like ARMv4t, and crucially, soft-float ABI.
Whilst the -mfpu option controls code generation in terms of which floating-point instructions may be used, apparently it's the float ABI which controls whether it'll let you do things which really only make sense on a hardware FPU, rather than under floating-point emulation.
When it's not configured by default, you need to explicitly select a floating-point ABI implying an actual hardware FPU, i.e. -mfloat-abi=hard (or -mfloat-abi=softfp, but there's really no reason to use that unless you need to link against other soft-float code).
-mfpu=vfpv3-d16 -mfloat-abi=hard
Just to give a more direct solution, I had to add -mfpu=vfpv3-d16.
Test code a.S:
fmrx r2, fpscr
Working command:
sudo apt-get install binutils-arm-linux-gnueabihf
arm-linux-gnueabihf-as -mfpu=vfpv3-d16 -mfloat-abi=hard a.S
Note that -mfloat-abi=hard is enabled by default on this particular build of arm-linux-gnueabihf-as, and could be omitted.
The default value of float-abi likely depends on -msoft-float vs -mhard-float controlled at GCC build time with:
./configure --with-float=soft
as documented at: https://gcc.gnu.org/install/configure.html You can get the flags used for your toolchain build with gcc -v as mentioned at: What configure options were used when building gcc / libstdc++? I could not however easily determine its default value if not given.
You may also be interested in -mfloat-abi=softfp which can produce hard floats for the executable, but generate soft function calls: ARM compilation error, VFP registered used by executable, not object file
The possible values of -mfpu= can be found at: https://gcc.gnu.org/onlinedocs/gcc-7.2.0/gcc/ARM-Options.html#ARM-Options
Also note that FMRX is the pre-UAL syntax for VMRS which the newer recommended syntax, see also: Are ARM instructuons SWI and SVC exactly same thing?
Tested on Ubuntu 16.04, arm-linux-gnueabihf-as 2.26.1.

arm gcc by default compiling its libc

I am trying to compile an SDK with the an embedded arm gcc compiler in cygwin. It is a makefile based SDK. My target is a cortex m3 device. My problem is, the SDK has a custom libc implementation for the target, and when I compile with the arm compiler (arm-none-eabi-gcc) it looks to pick up the gnu arm libc, not the SDK libc. This is resulting in a compilation error. I am positive the makefiles are correct (I copy and pasted the entire SDK from a computer where this was working). I no longer have access to that computer to try and verify / compare settings. I don't know how to prevent the arm gcc compiler from looking for its own implementation of the libc and instead point it to the correct implementation. Any help is greatly appreciated.
There are perhaps two solutions:
Create an environment specific to your tool - the GNU toolchain uses a number of environment variables to define default behaviour. For a custom toolchain, you will need to set all necessary variables to override the system defaults.
Use the -nostdlib linker option and explicitly link your desired library and C Runtime start-up code, so your linker command line might include the following:
-nostdlib -L/usr/myarmtools/gcc/lib -lc crt0.o
Note that -nostdlib suppresses the default linking of libc libstdc++ and crt0.o, so you must provide search path (-L) to the libraries, or explicitly link them by their full path and file name and link the C runtime object code for your target.
I use option 2 for preference as it will work in any environment. However if you wish to use common makefiles for building for multiple targets, option 1 may be useful.

C compiler for mac?

I'm working through a text on linking, and wanted to work along with some examples in said text.
To better understand whats going on when I invoke the gcc driver, I was looking into doing all the compilation old-school by hand;
preprocessing using cpp
compiling with cc1
assembling with as
linking using ld
Unfortunately, on my Mac I don't seem to be able to reference cc1directly (no listing of cc1 in man). What are my options?
Read some material about GCC internals. First the wikipage on GCC. Then, you could play with the MELT probe (you may want a Linux system to use it).
Then read the GCC manual. And the GCC resource center
Use gcc -v -Wall to compile, it will show what cc1 is running (and -Wall is always useful). So try compiling with gcc -v -Wall hello.c -o helloworld.bin
the cc1 program don't sit in your PATH or in /usr/bin/ but -on my system- in /usr/lib/gcc/x86_64-linux-gnu/4.8/cc1
The command gcc -print-prog-name=cc1 will tell you which cc1 is used by your gcc. See GCC debugging options for more.
The preprocessing is now inside cc1.
The gcc program is just a driver, starting cc1 (which does most of the compiling work), then as, ld etc...
The MELT site contains some documentation, and some slides explaining GCC, which you could find interesting. MELT is a domain specific language to extend GCC.
See also the picture on http://starynkevitch.net/Basile/gcc-melt/cc1-internals.svg and the below picture
picture from http://starynkevitch.net/Basile/gcc-melt/gcc-MELT-inside.png, done by me, CC BY SA
The cc1 is producing a .s assembly file; the as (started by gcc) is transforming it into .o. The ld linker (started by gcc) will produce a library or an executable.
PS. I have a Linux system, but things are very similar on MacOSX.
reference on linking
A good book about linking is Levine's Linkers & loaders book.
PS. MELT is obsolete in 2021, but I am working on the Bismon static source code analyzer and on RefPerSys (which generates C++ code).
For reference, I installed gcc-10 with brew on my macOS (Catalina).
While cc1 is not directly accessible (via PATH), it can be found in
/usr/local/Cellar/gcc/10.2.0/libexec/gcc/x86_64-apple-darwin19/10.2.0
If you are lost, try gcc -v and from the verbose information you may find where your cc1 is.

How to use gcc and -msoft-float on an i386/x86-64? [duplicate]

Is it (easily) possible to use software floating point on i386 linux without incurring the expense of trapping into the kernel on each call? I've tried -msoft-float, but it seems the normal (ubuntu) C libraries don't have a FP library included:
$ gcc -m32 -msoft-float -lm -o test test.c
/tmp/cc8RXn8F.o: In function `main':
test.c:(.text+0x39): undefined reference to `__muldf3'
collect2: ld returned 1 exit status
It is surprising that gcc doesn't support this natively as the code is clearly available in the source within a directory called soft-fp. It's possible to compile that library manually:
$ svn co svn://gcc.gnu.org/svn/gcc/trunk/libgcc/ libgcc
$ cd libgcc/soft-fp/
$ gcc -c -O2 -msoft-float -m32 -I../config/arm/ -I.. *.c
$ ar -crv libsoft-fp.a *.o
There are a few c files which don't compile due to errors but the majority does compile. After copying libsoft-fp.a into the directory with our source files they now compile fine with -msoft-float:
$ gcc -g -m32 -msoft-float test.c -lsoft-fp -L.
A quick inspection using
$ objdump -D --disassembler-options=intel a.out | less
shows that as expected no x87 floating point instructions are called and the code runs considerably slower as well, by a factor of 8 in my example which uses lots of division.
Note: I would've preferred to compile the soft-float library with
$ gcc -c -O2 -msoft-float -m32 -I../config/i386/ -I.. *.c
but that results in loads of error messages like
adddf3.c: In function '__adddf3':
adddf3.c:46: error: unknown register name 'st(1)' in 'asm'
Seems like the i386 version is not well maintained as st(1) points to one of the x87 registers which are obviously not available when using -msoft-float.
Strangely or luckily the arm version compiles fine on an i386 and seems to work just fine.
Unless you want to bootstrap your entire toolchain by hand, you could start with uclibc toolchain (the i386 version, I imagine) -- soft float is (AFAIK) not directly supported for "native" compilation on debian and derivatives, but it can be used via the "embedded" approach of the uclibc toolchain.
GCC does not support this without some extra libraries. From the 386 documentation:
-msoft-float Generate output containing library calls for floating
point. Warning: the requisite
libraries are not part of GCC.
Normally the facilities of the
machine's usual C compiler are used,
but this can't be done directly in
cross-compilation. You must make your
own arrangements to provide suitable
library functions for
cross-compilation.
On machines where a function returns
floating point results in the 80387
register stack, some floating point
opcodes may be emitted even if
-msoft-float is used
Also, you cannot set -mfpmath=unit to "none", it has to be sse, 387 or both.
However, according to this gnu wiki page, there is fp-soft and ieee. There is also SoftFloat.
(For ARM there is -mfloat-abi=softfp, but it does not seem like something similar is available for 386 SX).
It does not seem like tcc supports software floating point numbers either.
Good luck finding a library that works for you.
G'day,
Unless you're targetting a platform that doesn't have inbuilt FP support, I can't think of a reason why you'd want to emulate FP support.
Doesn't your x386 platform have external FPU support? Pity it's not a x486 with the FPU built in!
In my experience, any soft emulation is bound to be much slower than its hardware equivalent.
That's why I finished up writing a package in Ada to taget the onboard 68k FPU instead of using the soft emulation provided by the compiler manufacturer at the time. They finished up bundling it in their compiler as a matter of fact.
Edit: Just seen your comment below. Hmmm, if you don't need a full suite of FP support is it possible to roll your own for the few math functions you do need? That how the Ada package I mentioned got started.
HTH
cheers,

Resources