C compiler for mac? - macos

I'm working through a text on linking, and wanted to work along with some examples in said text.
To better understand whats going on when I invoke the gcc driver, I was looking into doing all the compilation old-school by hand;
preprocessing using cpp
compiling with cc1
assembling with as
linking using ld
Unfortunately, on my Mac I don't seem to be able to reference cc1directly (no listing of cc1 in man). What are my options?

Read some material about GCC internals. First the wikipage on GCC. Then, you could play with the MELT probe (you may want a Linux system to use it).
Then read the GCC manual. And the GCC resource center
Use gcc -v -Wall to compile, it will show what cc1 is running (and -Wall is always useful). So try compiling with gcc -v -Wall hello.c -o helloworld.bin
the cc1 program don't sit in your PATH or in /usr/bin/ but -on my system- in /usr/lib/gcc/x86_64-linux-gnu/4.8/cc1
The command gcc -print-prog-name=cc1 will tell you which cc1 is used by your gcc. See GCC debugging options for more.
The preprocessing is now inside cc1.
The gcc program is just a driver, starting cc1 (which does most of the compiling work), then as, ld etc...
The MELT site contains some documentation, and some slides explaining GCC, which you could find interesting. MELT is a domain specific language to extend GCC.
See also the picture on http://starynkevitch.net/Basile/gcc-melt/cc1-internals.svg and the below picture
picture from http://starynkevitch.net/Basile/gcc-melt/gcc-MELT-inside.png, done by me, CC BY SA
The cc1 is producing a .s assembly file; the as (started by gcc) is transforming it into .o. The ld linker (started by gcc) will produce a library or an executable.
PS. I have a Linux system, but things are very similar on MacOSX.
reference on linking
A good book about linking is Levine's Linkers & loaders book.
PS. MELT is obsolete in 2021, but I am working on the Bismon static source code analyzer and on RefPerSys (which generates C++ code).

For reference, I installed gcc-10 with brew on my macOS (Catalina).
While cc1 is not directly accessible (via PATH), it can be found in
/usr/local/Cellar/gcc/10.2.0/libexec/gcc/x86_64-apple-darwin19/10.2.0
If you are lost, try gcc -v and from the verbose information you may find where your cc1 is.

Related

Link a "toy" OS using llvm/clang

Is it possible (within reason) to build a "toy" OS on a mac using llmv/clang (and the other "normal" build tools)? By "toy" OS, I mean the simple, "Hello, World" examples found on OSDev (http://wiki.osdev.org/Bare_Bones) and x86 Bare Metal (https://github.com/cirosantilli/x86-bare-metal-examples).
My main problem is I can't figure out how to specify precisely where the linker should place the code (i.e., that the starting point should be 0x7c00, that bytes 510 and 511 need to be 0xaa55, etc.).
I would say yes it is possible within reason, at least if you consider waiting for a build of lld (and its dependency llvm) reasonable. Instructions to build lld can be found on their website or as part of this answer.
Compiling and linking for a different target than the host is relatively easy with clang. You just have to set a target, for example -target i386-none-elf for an ELF binary. Cross-compilation using clang is explained in more detail here.
As for macOS, as Micheal Petch noted, you have to use another linker than the standard ld installed. You could in theory install binutils to get an ELF ld but then you have to compile it yourself to set the target. My recommendation is to use lld which can target many architectures without the need to recompile.
With clang and a lld in place we can compile sources with
clang -c -o file.o file.c -target i386-none-elf # freestanding flags omitted
and then link them with
clang -o kernel.bin file.o -target i386-linux-elf -nostdlib -Wl,linkerscript.ld -fuse-ld=lld
Note that for linking I am using i386-linux-elf because there is a bug in clang where they just forward their input to gcc. But when using -nostdlib it is essentially the same.
If you want to see a complete example ready to build, you can take a look at https://github.com/Henje/x86-Toy-OS.

How to compile MPI with gcc?

Does anyone know if it is possible to compile MPI with gcc?. I need to use gcc, no mpicc.
mpicc is just a wrapper around certain set of compilers. Most implementations have their mpicc wrappers understand a special option like -showme (Open MPI) or -show (Open MPI, MPICH and derivates) that gives the full list of options that the wrapper passes on to the backend compiler.
For example, in Open MPI, wrappers are C++ programs that read plain text configuration files and build command line options that are further passed on to the compiler. mpicc -showme shows the full list of such options:
$ mpicc -showme
icc
-I/opt/MPI/openmpi-1.5.3/linux/intel/include
-I/opt/MPI/openmpi-1.5.3/linux/intel/include/openmpi
-fexceptions
-pthread
-I/opt/MPI/openmpi-1.5.3/linux/intel/lib
-Wl,-rpath,/opt/MPI/openmpi-1.5.3/linux/intel/lib
-I/opt/MPI/openmpi-1.5.3/linux/intel/lib
-L/opt/MPI/openmpi-1.5.3/linux/intel/lib
-lmpi
-ldl
-Wl,--export-dynamic
-lnsl
-lutil
(it's really a single line that I have split here to improve readability)
It that particular case Intel C Compiler icc is used as the backend compiler but we also have variants that use GCC. You can also get the list of options needed for the comple phase (usually known as CFLAGS) with mpicc -showme:compile:
$ mpicc -showme:compile
-I/opt/MPI/openmpi-1.5.3/linux/intel/include
-I/opt/MPI/openmpi-1.5.3/linux/intel/include/openmpi
-fexceptions
-pthread
-I/opt/MPI/openmpi-1.5.3/linux/intel/lib
as well as the list of options that you need to pass to the linker (known as LDFLAGS) with mpicc -showme:link:
$ mpicc -showme:link
-fexceptions
-pthread
-I/opt/MPI/openmpi-1.5.3/linux/intel/lib
-Wl,-rpath,/opt/MPI/openmpi-1.5.3/linux/intel/lib
-I/opt/MPI/openmpi-1.5.3/linux/intel/lib
-L/opt/MPI/openmpi-1.5.3/linux/intel/lib
-lmpi
-ldl
-Wl,--export-dynamic
-lnsl
-lutil
These could be used, e.g. in a Makefile, like this:
...
CFLAGS += $(shell mpicc -showme:compile)
LDFLAGS += $(shell mpicc -showme:link)
...
As far as I know -showme:compile and -showme:link are specific to Open MPI and other implementations only give the full list of options when called with -show.
I still think it's better to use mpicc directly because if it happens that something in the MPI setup is changed, it will be immediately reflected in the wrapper while you would have to change your build script / Makefile manually (unless you use -showme:compile and -showme:link to obtain the options automatically).
mpicc -compile_info for MPICH.
Yes, you can use gcc actually. But in my case (on Ubuntu) mpicc is just a wrapper of gcc, here is the output of command mpicc -showme:
gcc -I/usr/lib/openmpi/include/openmpi/opal/mca/event/libevent2021/libevent -I/usr/lib/openmpi/include/openmpi/opal/mca/event/libevent2021/libevent/include -I/usr/lib/openmpi/include -I/usr/lib/openmpi/include/openmpi -pthread -Wl,-rpath -Wl,/usr/lib/openmpi/lib -Wl,--enable-new-dtags -L/usr/lib/openmpi/lib -lmpi
While in Open MPI docs:
The Open MPI team strongly recommends that you simply use Open MPI's "wrapper" compilers to compile your MPI applications. That is, instead of using (for example) gcc to compile your program, use mpicc.
We repeat the above statement: the Open MPI Team strongly recommends that the use the wrapper compilers to compile and link MPI applications.
If you find yourself saying, "But I don't want to use wrapper compilers!", please humor us and try them. See if they work for you. Be sure to let us know if they do not work for you.
Many people base their "wrapper compilers suck!" mentality on bad behavior from poorly-implemented wrapper compilers in the mid-1990's. Things are much better these days; wrapper compilers can handle almost any situation, and are far more reliable than you attempting to hard-code the Open MPI-specific compiler and linker flags manually.
That being said, there are some -- very, very few -- situations where using wrapper compilers can be problematic -- such as nesting multiple wrapper compilers of multiple projects. Hence, Open MPI provides a workaround to find out what command line flags you need to compile MPI applications.
Here this answer is useful for you.
For MPICH, according to the mpicc man pages, mpicc -compile_info shows the flags for compiling a program, and mpicc -link_info shows the flags for linking a program.
Yes, you can certainly compile an MPI program without the convenience of the mpicc wrapper. On most implementations mpicc is a shell script (or similar) which sets environment variables, finds and links various libraries, all the sort of stuff that you might otherwise put into a Makefile.
I suggest that you find an instance of the mpicc script and deconstruct it.
mpicc is already using gcc as a backend

GCC link order changed?

I am trying to link a C++ module using GCC, essentially like this:
gcc -c hello.c
g++ -c world.cpp
gcc -ohello -lstdc++ hello.o world.o
Note that I use -lstdc++ to link the C++ module in, so that I can use gcc instead of g++. The problem is that I'm getting the error:
undefined reference to `operator new(unsigned long)'
(Assuming that world.cpp contains at least one call to new.)
This error is fixed if I put -lstdc++ at the end of the linker line, like this:
gcc -ohello hello.o world.o -lstdc++
I am aware that this question has been asked many times here, but I have a special requirement. I am not directly calling GCC. I am using a build system for a different programming language (Mercury) which is calling GCC on my behalf, and I can't easily modify the way it calls GCC (though I can specify additional libraries using the LDFLAGS environment variable). So I have two additional requirements:
I cannot use g++ to link (only gcc) -- that is why I am doing the -lstdc++ trick above rather than simply linking with g++).
I don't think that I can control the order of the linker commands -- Mercury will put the .o files on the command-line after any libraries.
I understand the basic reason why the order is important, but what is baffling me is why did this break now? I just updated to Ubuntu 11.10 / GCC 4.6.1. I have been successfully compiling this program for years using precisely the above technique (putting -lstdc++ first). Only now has this error come up. An unrelated program of mine links against OpenGL using -lgl and that too broke when I upgraded and I had to move -lgl to the end of the command-line. I'm probably going to discover that dozens of my programs no longer compile. Why did this change? Is there something wrong with my new system or is that the way it is now? Note that these are ordinary shared libraries, not statically linked.
Is there anything I can do to make GCC go back to the old way, where the order of libraries doesn't matter? Is there any other way I can convince GCC to link libstdc++ properly without moving it after the .o files on the command-line?
If Mercury puts object files after libraries, Mercury is broken. Libraries belong after object files - always. You may sometimes get away with the reverse order, but not reliably. (Static libraries must go after the object files that reference symbols in the static library. Sometimes, a linker will note the symbols defined by a shared library even when none of the symbols are used; sometimes, the linker will only note the shared library symbols if the shared library provides at least one symbol.)

How to use gcc and -msoft-float on an i386/x86-64? [duplicate]

Is it (easily) possible to use software floating point on i386 linux without incurring the expense of trapping into the kernel on each call? I've tried -msoft-float, but it seems the normal (ubuntu) C libraries don't have a FP library included:
$ gcc -m32 -msoft-float -lm -o test test.c
/tmp/cc8RXn8F.o: In function `main':
test.c:(.text+0x39): undefined reference to `__muldf3'
collect2: ld returned 1 exit status
It is surprising that gcc doesn't support this natively as the code is clearly available in the source within a directory called soft-fp. It's possible to compile that library manually:
$ svn co svn://gcc.gnu.org/svn/gcc/trunk/libgcc/ libgcc
$ cd libgcc/soft-fp/
$ gcc -c -O2 -msoft-float -m32 -I../config/arm/ -I.. *.c
$ ar -crv libsoft-fp.a *.o
There are a few c files which don't compile due to errors but the majority does compile. After copying libsoft-fp.a into the directory with our source files they now compile fine with -msoft-float:
$ gcc -g -m32 -msoft-float test.c -lsoft-fp -L.
A quick inspection using
$ objdump -D --disassembler-options=intel a.out | less
shows that as expected no x87 floating point instructions are called and the code runs considerably slower as well, by a factor of 8 in my example which uses lots of division.
Note: I would've preferred to compile the soft-float library with
$ gcc -c -O2 -msoft-float -m32 -I../config/i386/ -I.. *.c
but that results in loads of error messages like
adddf3.c: In function '__adddf3':
adddf3.c:46: error: unknown register name 'st(1)' in 'asm'
Seems like the i386 version is not well maintained as st(1) points to one of the x87 registers which are obviously not available when using -msoft-float.
Strangely or luckily the arm version compiles fine on an i386 and seems to work just fine.
Unless you want to bootstrap your entire toolchain by hand, you could start with uclibc toolchain (the i386 version, I imagine) -- soft float is (AFAIK) not directly supported for "native" compilation on debian and derivatives, but it can be used via the "embedded" approach of the uclibc toolchain.
GCC does not support this without some extra libraries. From the 386 documentation:
-msoft-float Generate output containing library calls for floating
point. Warning: the requisite
libraries are not part of GCC.
Normally the facilities of the
machine's usual C compiler are used,
but this can't be done directly in
cross-compilation. You must make your
own arrangements to provide suitable
library functions for
cross-compilation.
On machines where a function returns
floating point results in the 80387
register stack, some floating point
opcodes may be emitted even if
-msoft-float is used
Also, you cannot set -mfpmath=unit to "none", it has to be sse, 387 or both.
However, according to this gnu wiki page, there is fp-soft and ieee. There is also SoftFloat.
(For ARM there is -mfloat-abi=softfp, but it does not seem like something similar is available for 386 SX).
It does not seem like tcc supports software floating point numbers either.
Good luck finding a library that works for you.
G'day,
Unless you're targetting a platform that doesn't have inbuilt FP support, I can't think of a reason why you'd want to emulate FP support.
Doesn't your x386 platform have external FPU support? Pity it's not a x486 with the FPU built in!
In my experience, any soft emulation is bound to be much slower than its hardware equivalent.
That's why I finished up writing a package in Ada to taget the onboard 68k FPU instead of using the soft emulation provided by the compiler manufacturer at the time. They finished up bundling it in their compiler as a matter of fact.
Edit: Just seen your comment below. Hmmm, if you don't need a full suite of FP support is it possible to roll your own for the few math functions you do need? That how the Ada package I mentioned got started.
HTH
cheers,

How to statically compile an SDL game on Windows

I have been trying to produce a statically linked "single binary" version of my game for windows. I want to link with sdl, sdl_image and sdl_mixer which in turn pull in a few support libraries. Unfortunately I haven't found a way to get them all to compile and link using cygwin/mingw/gcc. As far as I can tell all existing public versions are only shared libraries / dlls.
Please note that I'm not talking about licencing here. The source will be open thus the GPL/LGPLness of sdl is not relevant.
When compiling your project, you need to make just a couple changes to your makefile.
Instead of sdl-config --libs, use sdl-config --static-libs
Surround the use of the above-mentioned sdl-config --static-libs with -Wl,-Bstatic and -Wl,-Bdynamic. This tells GCC to force static linking, but only for the libraries specified between them.
If your makefile currently looks like:
SDLLIBS=`sdl-config --libs`
Change it to:
SDLLIBS=-Wl,-Bstatic `sdl-config --static-libs` -Wl,-Bdynamic
These are actually the same things you should do on Unix-like systems, but it usually doesn't cause as many errors on Unix-likes if you use the simpler -static flag to GCC, like it does on Windows.
Via this SDL mailing list post it seems that the sdl development tools ship with a sdl-config script that you can use with the --static-libs flag to determine what linker flags you need to use.
Environment: VMWare Virtual Machine with Windows 7 x64 and Equipment we Dev c + + build 7.4.2.569, complilador g+ + (tdm-1) 4.6.1
Once, SDL2-2.0.3 API installed as configuration Dev c ++ is not very clear what I've done as tradition requires command line.
The first problem is that Windows 7 appears to have changed the methodology and they go to his ball. Inventory. Ref. https://stackoverflow.com/users/464581/cheers-and-hth-alf
After the first hurdle, SDL_platform.h is that bad, it's down another, I do not remember where I downloaded, but the next does not work in the indicated version.
We must put SDL2.h ls in the directory of the executable.
D:\prg_desa\zsdl2>g++ bar.cpp main.cpp -o pepe1 -ID:\SDL2-2.0.3\i686-w64-mingw32\include\SDL2 -LD:\SDL2-2.0.3\i686-w64-mingw32\lib -lmingw32 -lSDL2main -lSDL2 -mwindow
I've finally compiled and works SDL2 testing.
That's because the SDL libs are under the LGPL-license.
If you want to static link the libs (you can do that if your recompile them. It needs some hacking into the makefiles though) you have to place your game under some compatible open source license as well.
The SDL-libs come as shared libraries because most programs that use them are closed source. The binary distribution comes in a form that most people need.
On my system (Ubuntu) I have to use the following flags:
-Wl,Bstatic -lSDL_image `sdl-config --libs` -lpng12 -lz -ltiff -ljpeg -lasound -laudio -lesd -Wl,-Bdynamic `directfb-config --libs` -lpulse-simple -lcaca -laa -ldl
That links SDL, SDL_image, and many of their dependencies as static. libdl you never want static, so making a fully-static binary that uses SDL_image is a poor idea. pulse,caca,aa, and directfb can probably be made static. I haven't got far enough to figure them out yet.

Resources