I have a transformation in Java:
AffineTransform transform = new AffineTransform();
transform.translate(x, y);
transform.rotate(Math.toRadians(rotation));
transform.translate(-x, -y);
I'm using it on four points that make up a rectangle. The transformation rotates around the origin (x, y) as expected, but I want the most left point to stay where the origin x was, and the most top point to stay where the origin y was.
Any ideas how to modify the transformation to achieve this?
I solved this by searching through all the points, finding the extreme left point, and the extreme upper point, and then offsetting all the points in the transformation by these coordinates. It's really messy though, so if anyone happens to have a better solution, I'm all ears.
Related
I have a spherical heightfield, defined by a function f(x, y, z) which returns the distance from the origin of the surface of the heightfield of a line which passes from the origin through (x,y,z).
(In other words, the isosurface for my heightfield is |x,y,z| = f(x,y,z).)
(Also, for the sake of discussion below, I'm going to assume that surface(x,y,z) is the location of the point on the surface directly below (x,y,z).)
When rendering this, I need to calculate the normal for any point on the heightfield. What's the cheapest way of doing this?
To calculate the normal of a point on a rectangular heightfield, the usual trick is to offset (x,y,z) slightly in two directions parallel to the nominal surface, calculate three points on the heightfield to form a triangle, and then use the cross product to calculate the triangle's normal. This is easy as the three points can simply be surface(x,y,z), surface(x+1,y,z) and surface(x,y+1,z) (or similar). But for a spherical heightfield it's a little trickier because the normal can point in any direction. Simply displacing by x and y won't do because if two of my points fall on a radius, then surface() of them will return the same location and I won't get a triangle.
In the past what I've done is to use the vector <x,y,z> as a radius from the sphere's origin; then calculate a vector perpendicular to it; then rotate this vector around <x,y,z> to give me my three points. But this is fiddly and expensive and shouldn't be necessary. There must be a cheaper way. What is it?
Calculate the surface() points and, if they are close enough to cause problems, carry out the more expensive (but accurate) calculation; otherwise, use the cheap/easy calculation.
I am writing 3D app for OpenGL ES 2.0 where the user sets a path and flies over some terrain. It's basically a flight simulator on rails.
The path is defined by a series of points created from a spline. Every timeslice I advance the current position using interpolation i.e. I interpolate between p0 to p1, then when I reach p1 I interpolate between p1 and p2, then finally back from pN to p0.
I create a view matrix with something analogous to gluLookAt. The eye coord is the current position, the look at is the next position along the path and an up (0, 0, 1). So the camera looks towards where it is flying to next and Z points towards the sky.
But now I want to "bank" as I turn. i.e. the up vector is not necessarily directly straight up but a changes based on the rate of turn. I know my current direction and my last direction so I could increment or decrement the bank by some amount. The dot product would tell me the angle of turn, and the a cross product would tell me if its to the left or right. I could maintain a bank angle and keep it within the range -/+70 degrees, incrementing or decrementing appropriately.
I assume this is the correct approach but I could spend a long time implementing it to find out it isn't.
Am I on the right track and are there samples which demonstrate what I'm attempting to do?
Since you seem to have a nice smooth plane flying in normal conditions you don't need much... You are almost right in your approach and it will look totally natural. All you need is a cross product between 3 sequential points A, B, C: cross = cross(A-B, C-B). Now cross is the vector you need to turn the plane around the "forward" vector: Naturally the plane's up vector is (-gravitation) usually (0,0,1) and forward vector in point B is C-B (if no interpolation is needed) now "side" vector is side = normalized(cross(forward, up)) here is where you use the banking: side = side + cross*planeCorrectionParameter and then up = cross(normalized(side), normalized(forward)). "planeCorrectionParameter" is a parameter you should play with, in reality it would represent some combination of parameters such as dimensions of wings and hull, air density, gravity, speed, mass...
Note that some cross operations above might need swap in parameter order (cross(a,b) should be cross(b,a)) so play around a bit with that.
Your approach sounds correct but it will look unnatural. Take for example a path that looks like a sin function: The plane might be "going" to the left when it's actually going to the right.
I can mention two solutions to your problem. First, you can take the derivative of the spline. I'm assuming your spline is a f(t) function that returns a point (x, y, z). The derivative of a parametric curve is a vector that points to the rotation center: it'll point to the center of a circular path.
A couple of things to note with the above method: the derivative of a straight line is 0, and the vector will also be 0, so you have to fix the up vector manually. Also, you might want to fix this vector so it won't turn upside down.
That works and will look better than your method. But it will still look unnatural for some curves. The best method I can mention is quaternion interpolation, such as Slerp.
At each point of the curve, you also have a "right" vector: the vector that points to the right of the plane. From the curve and this vector, you can calculate the up vector at this point. Then, you use quaternion interpolation to interpolate the up vectors along the curve.
If position and rotation depends only on spline curvature the easiest way will be Numerical differentiation of 3D spline (you will have 2 derivatives one for vertical and one for horizontal components). Your UP and side will be normals to the tangent.
I have one problem related to rotation of point in 3D-space.
Suppose I have one point with X, Y and Z coordinates.
And now I want to rotate it, by specifying the rotation in one of these three ways:
By user-defined degree
By user-defined axis of rotation
Around (relative to) user-defined point
I found good link over here, but it doesn't address point 3. Can anyone help me solve that?
All rotations will go around the origin. So you translate to the origin, rotate, then translate back.
T = translate from global coordinates to user-coordinates
R = rotate around the origin (like in your link)
(T^-1) = translate back
point X
X_rotated = (T^-1)*R*T*X
If you have multiple points to rotate then multiply the matrices together:
A = (T^-1)*R*T
X_rotated = A*X
I have lot of points (which together form a 3d ellipse) in a given frame (X, Y, Z) and then I have vector (u,v,w). What I want is to orient the ellipse along the vector (u,v,w) . Anyone has useful thoughts on how to go about doing that?
Well I assume you can reverse engineer the ellipse equation by seeing what fits into either 4 or 5 points (I can't remember which -- but it should be easy to figure out from the equations.) Once you have that you can know the two major axes, and center point for the ellipse and the transformation should be straight forward.
Although I support #Paul Hsieh's mathematical approach (and have upvoted it), an alternative brute-force approach which will work for many arbitrary elongated shapes is:
Define the origin as the center of your frame
Find the most distant point from the origin.
Determine rotation that will bring that point into line with your vector.
Apply that rotation to all other points.
As a followup to my previous question about determining camera parameters I have formulated a new problem.
I have two pictures of the same rectangle:
The first is an image without any transformations and shows the rectangle as it is.
The second image shows the rectangle after some 3d transformation (XYZ-rotation, scaling, XY-translation) is applied. This has caused the rectangle to look a trapezoid.
I hope the following picture describes my problem:
alt text http://wilco.menge.nl/application.data/cms/upload/transformation%20matrix.png
How do determine what transformations (more specifically: what transformation matrix) have caused this tranformation?
I know the pixel locations of the corners in both images, hence i also know the distances between the corners.
I'm confused. Is this a 2d or a 3d problem?
The way I understand it, you have a flat rectangle embedded in 3d space, and you're looking at two 2d "pictures" of it - one of the original version and one based on the transformed version. Is this correct?
If this is correct, then there is not enough information to solve the problem. For example, suppose the two pictures look exactly the same. This could be because the translation is the identity, or it could be because the translation moves the rectangle twice as far away from the camera and doubles its size (thus making it look exactly the same).
This is a math problem, not programming ..
you need to define a set of equations (your transformation matrix, my guess is 3 equations) and then solve it for the 4 transformations of the corner-points.
I've only ever described this using German words ... so the above will sound strange ..
Based on the information you have, this is not that easy. I will give you some ideas to play with, however. If you had the 3D coordinates of the corners, you'd have an easier time. Here's the basic idea.
Move a corner to the origin. Thereafter, rotations will take place about the origin.
Determine vectors of the axes. Do this by subtracting the adjacent corners from the origin point. These will be a local x and y axis for your world.
Determine angles using the vectors. You can use the dot and cross products to determine the angle between the local x axis and the global x axis (1, 0, 0).
Rotate by the angle in step 3. This will give you a new x axis which should match the global x axis and a new local y axis. You can then determine another rotation about the x axis which will bring the y axis into alignment with the global y axis.
Without the z coordinates, you can see that this will be difficult, but this is the general process. I hope this helps.
The solution will not be unique, as Alex319 points out.
If the second image is really a trapezoid as you say, then this won't be too hard. It is a trapezoid (not a parallelogram) because of perspective, so it must be an isosceles trapezoid.
Draw the two diagonals. They intersect at the center of the rectangle, so that takes care of the translation.
Rotate the trapezoid until its parallel sides are parallel to two sides of the original rectangle. (Which two? It doesn't matter.)
Draw a third parallel through the center. Scale this to the sides of the rectangle you chose.
Now for the rotation out of the plane. Measure the distance from the center to one of the parallel sides and use the law of sines.
If it's not a trapezoid, just a quadralateral, then it'll be harder, you'll have to use the angles between the diagonals to find the axis of rotation.