Determine transformation matrix - matrix

As a followup to my previous question about determining camera parameters I have formulated a new problem.
I have two pictures of the same rectangle:
The first is an image without any transformations and shows the rectangle as it is.
The second image shows the rectangle after some 3d transformation (XYZ-rotation, scaling, XY-translation) is applied. This has caused the rectangle to look a trapezoid.
I hope the following picture describes my problem:
alt text http://wilco.menge.nl/application.data/cms/upload/transformation%20matrix.png
How do determine what transformations (more specifically: what transformation matrix) have caused this tranformation?
I know the pixel locations of the corners in both images, hence i also know the distances between the corners.

I'm confused. Is this a 2d or a 3d problem?
The way I understand it, you have a flat rectangle embedded in 3d space, and you're looking at two 2d "pictures" of it - one of the original version and one based on the transformed version. Is this correct?
If this is correct, then there is not enough information to solve the problem. For example, suppose the two pictures look exactly the same. This could be because the translation is the identity, or it could be because the translation moves the rectangle twice as far away from the camera and doubles its size (thus making it look exactly the same).

This is a math problem, not programming ..
you need to define a set of equations (your transformation matrix, my guess is 3 equations) and then solve it for the 4 transformations of the corner-points.
I've only ever described this using German words ... so the above will sound strange ..

Based on the information you have, this is not that easy. I will give you some ideas to play with, however. If you had the 3D coordinates of the corners, you'd have an easier time. Here's the basic idea.
Move a corner to the origin. Thereafter, rotations will take place about the origin.
Determine vectors of the axes. Do this by subtracting the adjacent corners from the origin point. These will be a local x and y axis for your world.
Determine angles using the vectors. You can use the dot and cross products to determine the angle between the local x axis and the global x axis (1, 0, 0).
Rotate by the angle in step 3. This will give you a new x axis which should match the global x axis and a new local y axis. You can then determine another rotation about the x axis which will bring the y axis into alignment with the global y axis.
Without the z coordinates, you can see that this will be difficult, but this is the general process. I hope this helps.

The solution will not be unique, as Alex319 points out.
If the second image is really a trapezoid as you say, then this won't be too hard. It is a trapezoid (not a parallelogram) because of perspective, so it must be an isosceles trapezoid.
Draw the two diagonals. They intersect at the center of the rectangle, so that takes care of the translation.
Rotate the trapezoid until its parallel sides are parallel to two sides of the original rectangle. (Which two? It doesn't matter.)
Draw a third parallel through the center. Scale this to the sides of the rectangle you chose.
Now for the rotation out of the plane. Measure the distance from the center to one of the parallel sides and use the law of sines.
If it's not a trapezoid, just a quadralateral, then it'll be harder, you'll have to use the angles between the diagonals to find the axis of rotation.

Related

How do I find the corners of a plane in 3d space if I know three points

Apologies in advance for my feeble maths.
I'm trying to be able to find the corners of a plane in space based on the equation of that plane. Here's what I know. I know three points on the plane and I know where they fall in the 2d coordinate space of the plane (x,y) and where they are in 3d space. I know the width and height of the plane and I can now calculate the equation of the plane. The plane sits on the inside of a large sphere that surrounds the origin so, in theory, it should more or less face where the camera is (though in my diagram it doesn't face the origin as it's just for illustrative purposes)
But it's not clear to me how I can use that to figure out another point. One thought I had was to find the transform that moves the plane parallel to the xy axis and rotate it round one of the points (so it stays in the same place), find the position of the new point, and then rotate it by the inverse of that transform. But it's not clear to me how I would find that transform matrix or how to use it. Could I do this using the normal and vector maths? I understand what normals are, but I'm fuzzy about how to use them.

Calculating the rotation vector of a sphere

I'm trying to calculate the axis of rotation of a ball which is moving and spinning at the same time, i.e. I want the vector along the axis that the ball is spinning on.
For every frame I know the x, y and z locations of 3 specific points on the surface of the sphere. I assume that by looking at how these 3 points have moved in successive frames, you can calculate the axis of rotation of the ball, however I have very little experience with this kind of maths, any help would be appreciated!
You could use the fact that the direction a position vector moves in will always be perpendicular to the axis of rotation. Therefore, if you have two position vectors v1 and v2 at successive times (for the same point), use
This gives you an equation with three unknowns (the components of w, the rotation axis). If you then plug in all three points you have knowledge of you should be able to solve these simultaneous equations and work out w.

Algorithms: Ellipse matching

I have many images like the following (only white and black):
My final problem is to find well matching ellipses. Unfortunately the real used images are not always that nice like this. They could be deformed a bit, which makes ellipse matching probably harder.
My idea is to find "break points". I markes them in the following picture:
Maybe these points could help to make a matching for the ellipses. The end result should be something like this:
Has someone an idea what algorithm may be used to find these break points? Or even better to make good ellipse matching?
Thank you very much
Sample the circumference points
Just scan your image and select All Black pixels with any White neighbor. You can do this by recoloring the remaining black pixels to any unused color (Blue).
After whole image is done you can recolor the inside back from unused color (Blue) to white.
form a list of ordered circumference points per cluster/ellipse
Just scan your image and find first black pixel. Then use A* to order the circumference points and store the path in some array or list pnt[] and handle it as circular array.
Find the "break points"
They can be detect by peak in the angle between neighbors of found points. something like
float a0=atan2(pnt[i].y-pnt[i-1].y,pnt[i].x-pnt[i-1].x);
float a1=atan2(pnt[i+1].y-pnt[i].y,pnt[i+1].x-pnt[i].x);
float da=fabs(a0-a1); if (da>M_PI) da=2.0*M_PI-da;
if (da>treshold) pnt[i] is break point;
or use the fact that on break point the slope angle delta change sign:
float a1=atan2(pnt[i-1].y-pnt[i-2].y,pnt[i-1].x-pnt[i-2].x);
float a1=atan2(pnt[i ].y-pnt[i-1].y,pnt[i ].x-pnt[i-1].x);
float a2=atan2(pnt[i+1].y-pnt[i ].y,pnt[i+1].x-pnt[i ].x);
float da0=a1-a0; if (da0>M_PI) da0=2.0*M_PI-da0; if (da0<-M_PI) da0=2.0*M_PI+da0;
float da1=a2-a1; if (da1>M_PI) da1=2.0*M_PI-da1; if (da1<-M_PI) da1=2.0*M_PI+da1;
if (da0*da1<0.0) pnt[i] is break point;
fit ellipses
so if no break points found you can fit the entire pnt[] as single ellipse. For example Find bounding box. It's center is center of ellipse and its size gives you semi-axises.
If break points found then first find the bounding box of whole pnt[] to obtain limits for semi-axises and center position area search. Then divide the pnt[] to parts between break points. Handle each part as separate part of ellipse and fit.
After all the pnt[] parts are fitted check if some ellipses are not the same for example if they are overlapped by another ellipse the they would be divided... So merge the identical ones (or average to enhance precision). Then recolor all pnt[i] points to white, clear the pnt[] list and loop #2 until no more black pixel is found.
how to fit ellipse from selection of points?
algebraically
use ellipse equation with "evenly" dispersed known points to form system of equations to compute ellipse parameters (x0,y0,rx,ry,angle).
geometrically
for example if you detect slope 0,90,180 or 270 degrees then you are at semi-axis intersection with circumference. So if you got two such points (one for each semi-axis) that is all you need for fitting (if it is axis-aligned ellipse).
for non-axis-aligned ellipses you need to have big enough portion of the circumference available. You can exploit the fact that center of bounding box is also the center of ellipse. So if you got the whole ellipse you know also the center. The semi-axises intersections with circumference can be detected with biggest and smallest tangent change. If you got center and two points its all you need. In case you got only partial center (only x, or y coordinate) you can combine with more axis points (find 3 or 4)... or approximate the missing info.
Also the half H,V lines axis is intersecting ellipse center so it can be used to detect it if not whole ellipse in the pnt[] list.
approximation search
You can loop through "all" possible combination of ellipse parameters within limits found in #4 and select the one that is closest to your points. That would be insanely slow of coarse so use binary search like approach something like mine approx class. Also see
Curve fitting with y points on repeated x positions (Galaxy Spiral arms)
on how it is used for similar fit to yours.
hybrid
You can combine geometrical and approximation approach. First compute what you can by geometrical approach. And then compute the rest with approximation search. you can also increase precision of the found values.
In rare case when two ellipses are merged without break point the fitted ellipse will not match your points. So if such case detected you have to subdivide the used points into groups until their fits matches ...
This is what I have in mind with this:
You probably need something like this:
https://en.wikipedia.org/wiki/Circle_Hough_Transform
Your edge points are simply black pixels with at least one white 4-neighbor.
Unfortunately, though, you say that your ellipses may be “tilted”. Generic ellipses are described by quadratic equations like
x² + Ay² + Bxy + Cx + Dy + E = 0
with B² < 4A (⇒ A > 0). This means that, compared to the circle problem, you don't have 3 dimensions but 5. This causes the Hough transform to be considerably harder. Luckily, your example suggests that you don't need a high resolution.
See also: algorithm for detecting a circle in an image
EDIT
The above idea for an algorithm was too optimistic, at least if applied in a straightforward way. The good news is that it seems that two smart guys (Yonghong Xie and Qiang Ji) have already done the homework for us:
https://www.ecse.rpi.edu/~cvrl/Publication/pdf/Xie2002.pdf
I'm not sure I would create my own algorithm. Why not leverage the work other teams have done to figure out all that curve fitting of bitmaps?
INKSCAPE (App Link)
Inkscape is an open source tool which specializes in vector graphics editing with some ability to work with raster (bitmap) parts too.
Here is a link to a starting point for Inkscape's API:
http://wiki.inkscape.org/wiki/index.php/Script_extensions
It looks like you can script within Inkscape, or access Inkscape via external scripts.
You also may be able to do something with zero scripting, from the inkscape command line interface:
http://wiki.inkscape.org/wiki/index.php/Frequently_asked_questions#Can_Inkscape_be_used_from_the_command_line.3F
COREL DRAW (App Link)
Corel Draw is recognized as the premier industry solution for vector graphics, and has some great tools for converting rasterized images into vector images.
Here's a link to their API:
https://community.coreldraw.com/sdk/api
Here's a link to Corel Draw batch image processing (non-script solution):
http://howto.corel.com/en/c/Automating_tasks_and_batch-processing_images_in_Corel_PHOTO-PAINT

How to generate a subdivided icosahedron?

I've asked some questions here and seen this geometric shape mentioned a few times among other geodesic shapes, but I'm curious how exactly would I generate one about a point xyz?
There's a tutorial here.
The essential idea is to start with an icosahedron (which has 20 triangular faces) and to repeatedly subdivide each triangular face into smaller triangles. At each stage, each new point is shifted radially so it is the correct distance from the centre.
The number of stages will determine how many triangles are generated and hence how close the resulting mesh will be to a sphere.
Here is one reference that I've used for subdivided icosahedrons, based on the OpenGL Red Book. The BSD-licensed source code to my iPhone application Molecules contains code for generating simple icosahedrons and loading them into a vertex buffer object for OpenGL ES. I haven't yet incorporated subdivision to improve the quality of the rendering, but it's in my plans.
To tesselate a sphere, most people sub-divide the points linearly, but that does not produce a rounded shape.
For a rounded tesselation, rotate the two points through a series of rotations.
Rotate the second point around z (by the z angle of point 1) to 0
Rotate the second point around y (by the y angle of point 1) to 0 (this logically puts point 1 at the north pole).
Rotate the second point around z to 0 (this logically puts point 1 on the x/y plane, which now becomes a unit circle).
Find the half-angle, compute x and y for the new 3rd point, point 3.
Perform the counter-rotations in the reverse order for steps 3), 2) and 1) to position the 3rd point to its destination.
There are also some mathematical considerations for values near each of the near-0 locations, such as the north and south pole, and the right-most and left-most, and fore-most and aft-most positions, so check those first and perform an additional rotation by pi/4 (45 degrees) if they're at those locations. This prevents floating point math libraries from freaking out and producing wildly out-of-character values for atan2() and other trig functions.
Hope this helps! :-)

Resources for image distortion algorithms

Where can I find algorithms for image distortions? There are so much info of Blur and other classic algorithms but so little of more complex ones. In particular, I am interested in swirl effect image distortion algorithm.
I can't find any references, but I can give a basic idea of how distortion effects work.
The key to the distortion is a function which takes two coordinates (x,y) in the distorted image, and transforms them to coordinates (u,v) in the original image. This specifies the inverse function of the distortion, since it takes the distorted image back to the original image
To generate the distorted image, one loops over x and y, calculates the point (u,v) from (x,y) using the inverse distortion function, and sets the colour components at (x,y) to be the same as those at (u,v) in the original image. One ususally uses interpolation (e.g. http://en.wikipedia.org/wiki/Bilinear_interpolation ) to determine the colour at (u,v), since (u,v) usually does not lie exactly on the centre of a pixel, but rather at some fractional point between pixels.
A swirl is essentially a rotation, where the angle of rotation is dependent on the distance from the centre of the image. An example would be:
a = amount of rotation
b = size of effect
angle = a*exp(-(x*x+y*y)/(b*b))
u = cos(angle)*x + sin(angle)*y
v = -sin(angle)*x + cos(angle)*y
Here, I assume for simplicity that the centre of the swirl is at (0,0). The swirl can be put anywhere by subtracting the swirl position coordinates from x and y before the distortion function, and adding them to u and v after it.
There are various swirl effects around: some (like the above) swirl only a localised area, and have the amount of swirl decreasing towards the edge of the image. Others increase the swirling towards the edge of the image. This sort of thing can be done by playing about with the angle= line, e.g.
angle = a*(x*x+y*y)
There is a Java implementation of lot of image filters/effects at Jerry's Java Image Filters. Maybe you can take inspiration from there.
The swirl and others like it are a matrix transformation on the pixel locations. You make a new image and get the color from a position on the image that you get from multiplying the current position by a matrix.
The matrix is dependent on the current position.
here is a good CodeProject showing how to do it
http://www.codeproject.com/KB/GDI-plus/displacementfilters.aspx
there has a new graphic library have many feature
http://code.google.com/p/picasso-graphic/
Take a look at ImageMagick. It's a image conversion and editing toolkit and has interfaces for all popular languages.
The -displace operator can create swirls with the correct displacement map.
If you are for some reason not satisfied with the ImageMagick interface, you can always take a look at the source code of the filters and go from there.

Resources