Does a compiler always produce an assembly code? - gcc

From Thinking in C++ - Vol 1:
In the second pass, the code generator walks through the parse tree
and generates either assembly language code or machine code for the
nodes of the tree.
Well at least in GCC if we give the option of generating the assembly code, the compiler obeys by creating a file containing assembly code. But, when we simply run the command gcc without any options does it not produce the assembly code internally?
If yes, then why does it need to first produce an assembly code and then translate it to machine language?

TL:DR different object file formats / easier portability to new Unix platforms (historically) is one of the main reasons for gcc keeping the assembler separate from the compiler, I think. Outside of gcc, the mainstream x86 C and C++ compilers (clang/LLVM, MSVC, ICC) go straight to machine code, with the option of printing asm text if you ask them to.
LLVM and MSVC are / come with complete toolchains, not just compilers. (Also come with assembler and linker). LLVM already has object-file handling as a library function, so it can use that instead of writing out asm text to feed to a separate program.
Smaller projects often choose to leave object-file format details to the assembler. e.g. FreePascal can go straight to an object file on a few of its target platforms, but otherwise only to asm. There are many claims (1, 2, 3, 4) that almost all compilers go through asm text, but that's not true for many of the biggest most-widely-used compilers (except GCC) that have lots of developers working on them.
C compilers tend to either target a single platform only (like a vendor's compiler for a microcontroller) and were written as "the/a C implementation for this platform", or be very large projects like LLVM where including machine code generation isn't a big fraction of the compiler's own code size. Compilers for less widely used languages are more usually portable, but without wanting to write their own machine-code / object-file handling. (Many compilers these days are front-ends for LLVM, so get .o output for free, like rustc, but older compilers didn't have that option.)
Out of all compilers ever, most do go to asm. But if you weight by how often each one is used every day, going straight to a relocatable object file (.o / .obj) is significant fraction of the total builds done on any given day worldwide. i.e. the compiler you care about if you're reading this might well work this way.
Also, compilers like javac that target a portable bytecode format have less reason to use asm; the same output file and bytecode format work across every platform they have to run on.
Related:
https://retrocomputing.stackexchange.com/questions/14927/when-and-why-did-high-level-language-compilers-start-targeting-assembly-language on retrocomputing has some other answers about advantages of keeping as separate.
What is the need to generate ASM code in gcc, g++
What do C and Assembler actually compile to? - even compilers that go straight to machine code don't produce linked executables directly, they produce relocatable object files (.o or .obj). Except for tcc, the Tiny C Compiler, intended for use on the fly for one-file C programs.
Semi-related: Why do we even need assembler when we have compiler? asm is useful for humans to look at machine code, not as a necessary part of C -> machine code.
Why GCC does what it does
Yes, as is a separate program that the gcc front-end actually runs separately from cc1 (the C preprocessor+compiler that produces text asm).
This makes gcc slightly more modular, making the compiler itself a text -> text program.
GCC internally uses some binary data structures for GIMPLE and RTL internal representations, but it doesn't write (text representations of) those IR formats to files unless you use a special option for debugging.
So why stop at assembly? This means GCC doesn't need to know about different object file formats for the same target. For example, different x86-64 OSes use ELF, PE/COFF, MachO64 object files, and historically a.out. as assembles the same text asm into the same machine code surrounded by different object file metadata on different targets. (There are minor differences gcc has to know about, like whether to prepend an _ to symbol names or not, and whether 32-bit absolute addresses can be used, and whether code has to be PIC.)
Any platform-specific quirks can be left to GNU binutils as (aka GAS), or gcc can use the vendor-supplied assembler that comes with a system.
Historically, there were many different Unix systems with different CPUs, or especially the same CPU but different quirks in their object file formats. And more importantly, a fairly compatible set of assembler directives like .globl main, .asciiz "Hello World!\n", and similar. GAS syntax comes from Unix assemblers.
It really was possible in the past to port GCC to a new Unix platform without porting as, just using the assembler that comes with the OS.
Nobody has ever gotten around to integrating an assembler as a library into GCC's cc1 compiler. That's been done for the C preprocessor (which historically was also done in a separate process), but not the assembler.
Most other compilers do produce object files directly from the compiler, without a text asm temporary file / pipe. Often because the compiler was only designed for one or a couple targets, like MSVC or ICC or various compilers that started out as x86-only, or many vendor-supplied compilers for embedded chips.
clang/LLVM was designed much more recently than GCC. It was designed to work as an optimizing JIT back-end, so it needed a built-in assembler to make it fast to generate machine code. To work as an ahead-of-time compiler, adding support for different object-file formats was presumably a minor thing since the internal software architecture was there to go straight to binary machine code.
LLVM of course uses LLVM-IR internally for target-independent optimizations before looking for back-end-specific optimizations, but again it only writes out this format as text if you ask it to.

The assembler stage can be justified by two reasons:
it allows c/c++ code to be translated to a machine independent abstract assembler, from which there exists easy conversions to a multitude of different instruction set architectures
it takes out the burden of validating correct opcode, prefix, r/m, etc. instruction encoding for CISC architectures, when one can utilize an existing software [component].
The 1st edition of that book is from 2000, but is may as well talk about the early 90's, when c++ itself was translated to c and when the gnu/free software idea (including source code for compilers) was not really known.
EDIT: One of several nonsensical abstract machine independent languages used by GCC is RTL -- Register Transfer Language.

It's a matter of compiler implementation. Assembly code is an intermediate step between higher-level language (the one being compiled) and the resulting binary output. In general it's easier first to convert to assembly and after that to binary code instead of directly creating the binary code.

Gcc does create the assembly code as a temporary file, calls the assembler, and maybe the linker depending on what you do or dont add on the command line. That makes an object and then if enabled the binary, then all the temporary files are cleaned up. Use -save-temps to see what is really going on (there are a number of temporary files).
Running gcc without any options absolutely creates an asm file.
There is no "need" for this, it is simply how they happened to design it. I assume for multiple reasons, you will already want/need an assembler and linker before you start on a compiler (cart before the horse, asm on a processor before some other language). "The unix way" is to not re-invent tools or libraries, but just add a little on top, so that would imply going to asm then letting the assembler and linker do the rest. You dont have to re-invent so much of the assemblers job that way (multiple passes, resolving labels, etc). It is easier for a developer to debug ascii asm than bits. Folks have been doing it this way for generations of compilers. Just in time compilers are the primary exception to this habit, by definition they have to be able to go to machine code, so they do or can. Only recently though did llvm provide a way for the command line tools (llc) to go straight to object without stopping at asm (or at least it appears that way to the user).

Related

Do all compiled codes have same speed no matter what language they were written in?

Suppose I write a program in both Python and C++ and I turn these to executable. Now, will both the executable have the same speed or will it vary (I guess it shouldn't cause it should now be in machine code form) ?
Suppose I write a program in both Python and C++ and I turn these to executable. Now, will both the executable have the same speed
Of course usually not (assuming both code implement the same algorithm). And the runtime speed depends a lot of the compiler itself (e.g. tinycc -for C- and GCC or Clang ....) and even of its versions and compilation flags (e.g. -Os vs -O2 with g++). BTW, Python is compiled to some bytecode, not to machine code.
Of course, some software are mostly spending CPU time elsewhere (e.g. in some relational database manager such as PostGreSQL). Then rewriting them in C++ instead of Python won't gain a lot of performance. And some software are mostly IO bound (e.g. tar(1) used without compression)
At last, some C++ programs could generate machine code at runtime (e.g. using AsmJit...) using partial evaluation techniques, which may give a huge speedup.
On Linux, you could generate some C or C++ code at runtime, compile it as a temporary plugin, then dlopen(3) that temporary plugin (fetching new function pointers using dlsym(3)... Adapt the manydl.c example to your needs)
Also, C++ is a very difficult language to learn. Read some good book about it.
Read of course the Dragon book.
Since an entire book is needed to answer your question !

How can a compiler be cross platform(hardware)?

I just realized that binary compilers convert source code to the binary of the destination platform. Kind of obvious... but if a compiler works such way, then how can the same compiler be used for different systems like x86, ARM, MIPS, etc?
Shouldn't they be supposed to "know" the machine-language of the hardware platform to be able to know how to build the binary? Does a compiler(like gcc) knows the machine language of every single platform that is supported?
How is that system possible, and how can a compiler be optimized for that many platforms at the same time?
Yes, they have to "know" the machine language for every single platform they support. This is a required to generate machine code. However, compilation is a multi-step process. Usually, the first steps of the compilation are common to most architectures.
Taken from wikipedia
Structure of a compiler
Compilers bridge source programs in high-level
languages with the underlying hardware.
A compiler requires
determining the correctness of the syntax of programs,
generating correct and efficient object code,
run-time organization, and
formatting output according to assembler and/or linker conventions.
A
compiler consists of three main parts: the frontend, the middle-end,
and the backend.
The front end
checks whether the program is correctly
written in terms of the programming language syntax and semantics.
Here legal and illegal programs are recognized. Errors are reported,
if any, in a useful way. Type checking is also performed by collecting
type information. The frontend then generates an intermediate
representation or IR of the source code for processing by the
middle-end.
The middle end
is where optimization takes place. Typical
transformations for optimization are removal of useless or unreachable
code, discovery and propagation of constant values, relocation of
computation to a less frequently executed place (e.g., out of a loop),
or specialization of computation based on the context. The middle-end
generates another IR for the following backend. Most optimization
efforts are focused on this part.
The back end
is responsible for translating the IR from the middle-end into assembly code. The target
instruction(s) are chosen for each IR instruction. Register allocation
assigns processor registers for the program variables where possible.
The backend utilizes the hardware by figuring out how to keep parallel
execution units busy, filling delay slots, and so on. Although most
algorithms for optimization are in NP, heuristic techniques are
well-developed.
More this article which describes the structure of a compiler and on this one which deals with Cross compilers.
The http://llvm.org/ project will answer all of your questions in this regard :)
In a nutshell, cross HW compilers emit "intermediate representation" of the code , which is HW agnostic and then its being customized via the native tool chain
Yes it is possible, it's called Cross Compiler. Compilers usually first they generate the object code which is not understanable by the current machine but it can be migrated to the destiny machine with another compiler. Next, object code is "compiled" again and linked with external libraries of the target machines.
TL;DR: Yes, the compilers knows the target code, but you can compile in another hardware.
I recommend you to read attached links for information.
Every platform has its own toolchain, toolchain includes gcc,gdb,ld,nm etc.
Let's take specific example of gcc as of now. GCC source code has many layers including architecture dependent and independent part. Architecture dependent part contains procedures to handle architecture specific things like their stack, function calls, floating point operations. We need to cross compile the gcc source code for a specific architecture like for ARM. You can see its steps here for reference:- http://www.ailis.de/~k/archives/19-arm-cross-compiling-howto.html#toolchain.
This architecture dependent part is responsible for handling machine language operations.

can you link D object files with C object files?

Let's say I have two source files, one written in the D programming language and the other one written in the C programming language. I both just compile them, the D source with the DMD (Digital Mars D-Compiler) and the C source with the GCC compiler.
The result will be two .o (object) files which originated from a different source. Is it possible to link these two files into one executable?
That depends on lots of things. There are different ways of handling arguments: The caller sets them up, the callee cleans up (Pascal-style in Windows, more compact); or the caller sets up and cleans up (C style, uses more space as the cleanup is repeated for each call site). Arguments can be passed by value or reference. Data (particularly arrays and structures) can be laid out differently in memory. From a rapid look at D's homepage it has stuff like inmutable data and native associative arrays, that would have to be matched in C (and probably requires linking in D's runtime, and unless that one builds on your system's C library you'll be in a lot of pain). And so on. If you know details of how things are done, you can certainly provide the necessary glue and missing compiler support functions, but easy it won't be. In case of GCC compilers there are guarantees and commonalities that help, for unrelated compilers it is probably more of a gamble. There is a LLVM based D compiler, which I'd guess has more chance of working with gcc, as one of clang's objectives is GCC compatibility.

Building minimal standalone executable with GCC

I have few programs (written in C) implementing some algorithms, that I use to measure computation time. Whole data is implemented as static libraries directly in code, there's no input and output from these programs. There's also no C library calls (no printfs etc.).
I want to build fully independent and minimal executable. I don't want to link my program with libgcc (target CPU has coprocessor, so I don't need to emulate floating point arithmetic), C library or any other. Actually I want to make my program as independent as it's possible. On Linux ELF program has to be linked only with crt0.o to run properly, right?
I'm mostly asking because I'm curious ;)
Link with gcc -nostdlib, then use objdump -h and strip --remove-section=... to really make it small by getting rid of silly things like the comment section and the exception handling frame information sections. Keep removing sections until it stops working.
And compile with -Os of course

GCC: Inline assembly - good for?

So I just found out GCC could do inline assembly and I was wondering two things:
What's the benefit of being able to inline assembly?
Is it possible to use GCC as an assembly compiler/assembler to learn assembly?
I've found a couple articles but they are all oldish, 2000 and 2001, not really sure of their relevance.
Thanks
The benefit of inline assembly is to have the assembly code, inlined (wait wait, don't kill me). By doing this, you don't have to worry about calling conventions, and you have much more control of the final object file (meaning you can decide where each variable goes- to which register or if it's memory stored), because that code won't be optimized (assuming you use the volatile keyword).
Regarding your second question, yes, it's possible. What you can do is write simple C programs, and then translate them to assembly, using
gcc -S source.c
With this, and the architecture manuals (MIPS, Intel, etc) as well as the GCC manual, you can go a long way.
There's some material online.
http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html
http://gcc.gnu.org/onlinedocs/gcc-4.4.2/gcc/
The downside of inline assembly, is that usually your code will not be portable between different compilers.
Hope it helps.
Inline Assembly is useful for in-place optimizations, and access to CPU features not exposed by any libraries or the operating system.
For example, some applications need strict tracking of timing. On x86 systems, the RDTSC assembly command can be used to read the internal CPU timer.
Time Stamp Counter - Wikipedia
Using GCC or any C/C++ compiler with inline assembly is useful for small snippets of code, but many environments do not have good debugging support- which will be more important when developing projects where inline assembly provides specific functionality. Also, portability will become a recurring issue if you use inline assembly. It is preferable to create specific items in a suitable environment (GNU assembler, MASM) and import them projects as needed.
Inline assembly is generally used to access hardware features not otherwise exposed by the compiler (e.g. vector SIMD instructions where no intrinsics are provided), and/or for hand-optimizing performance critical sections of code where the compiler generates suboptimal code.
Certainly there is nothing to stop you using the inline assembler to test routines you have written in assembly language; however, if you intend to write large sections of code you are better off using a real assembler to avoid getting bogged down with irrelevancies. You will likely find the GNU assembler got installed along with the rest of the toolchain ;)
The benefit of embedding custom assembly code is that sometimes (dare I say, often times) a developer can write more efficient assembly code than a compiler can. So for extremely performance intensive items, custom written assembly might be beneficial. Games tend to come to mind....
As far as using it to learn assembly, I have no doubt that you could. But, I imagine that using an actual assembly SDK might be a better choice. Aside from the standard experimentation of learning how to use the language, you'd probably want the knowledge around setting up a development environment.
You should not learn assembly language by using the inline asm feature.
Regarding what it's good for, I agree with jldupont, mostly obfuscation. In theory, it allows you to easily integrate with the compiler, because the complex syntax of extended asm allows you to cooperate with the compiler on register usage, and it allows you to tell the compiler that you want this and that to be loaded from memory and placed in registers for you, and finally, it allows the compiler to be warned that you have clobbered this register or that one.
However, all of that could have been done by simply writing standard-conforming C code and then writing an assembler module, and calling the extension as a normal function. Perhaps ages ago the procedure call machine op was too slow to tolerate, but you won't notice today.
I believe the real answer is that it is easier, once you know the contraint DSL. People just throw in an asm and obfuscate the C program rather than go to the trouble of modifying the Makefile and adding a new module to the build and deploy workflow.
This isn't really an answer, but kind of an extended comment on other peoples' answers.
Inline assembly is still used to access CPU features. For instance, in the ARM chips used in cell phones, different manufacturers distinguish their offerings via special features that require unusual machine language instructions that would have no equivalent in C/C++.
Back in the 80s and early 90s, I used inline assembly a lot for optimizing loops. For instance, C compilers targeting 680x0 processors back then would do really stupid things, like:
calculate a value and put it in data register D1
PUSH D1, A7 # Put the value from D1 onto the stack in RAM
POP D1, A7 # Pop it back off again
do something else with the value in D1
But I haven't needed to do that in, oh, probably fifteen years, because modern compilers are much smarter. In fact, current compilers will sometimes generate more efficient code than most humans would. Especially given CPUs with long pipelines, branch prediction, and so on, the fastest-executing sequence of instructions is not always the one that would make most sense to a human. So you can say, "Do A B C D in that order", and the compiler will scramble the order all around for greater efficiency.
Playing a little with inline assembly is fine for starters, but if you're serious, I echo those who suggest you move to a "real" assembler after a while.
Manual optimization of loops that are executed a lot. This article is old, but can give you an idea about the kinds of optimizations hand-coded assembly is used for.
You can also use the assembler gcc uses directly. It's called as (see man as). However, many books and articles on assembly assume you are using a DOS or Windows environment. So it might be kind of hard to learn on Linux (maybe running FreeDOS on a virtual machine), because you not only need to know the processor (you can usually download the official manuals) you code for but also how hook to into the OS you are running.
A nice beginner book using DOS is the one by Norton and Socha. It's pretty old (the 3rd and latest edition is from 1992), so you can get used copies for like $0.01 (no joke). The only book I know of that is specific to Linux is the free "Programming from the Ground Up"

Resources