ruby: name of this syntax, which splits positional argument of block - ruby

I see a piece of code today
#! cruby 1.9
lam = lambda do |(a,b),c|
#blahblah
end
It seemingly equals to
lam = lambda do |l,c|
a,b = *l
#blahblah
end
Are there 'official name' for this syntax?

Yes, it is called destructuring.
So what is destructuring? The most concise definition I found is from Common Lisp the Language. Destructuring allows you to bind a set of variables to a corresponding set of values anywhere that you can normally bind a value to a single variable. It is a powerful feature of Clojure that lets you write some very elegant code. For more information about Clojure's features, I recommend you check out Jay Field's blog post on the subject. While destructuring in Ruby is not quite as powerful as Clojure, you can still do some cool stuff.

Related

Overriding Ruby's & and | methods doesn't require . operator? [duplicate]

I'm wondering why calls to operator methods don't require a dot? Or rather, why can't normal methods be called without a dot?
Example
class Foo
def +(object)
puts "this will work"
end
def plus(object)
puts "this won't"
end
end
f = Foo.new
f + "anything" # "this will work"
f plus "anything" # NoMethodError: undefined method `plus' for main:Object
The answer to this question, as to pretty much every language design question is: "Just because". Language design is a series of mostly subjective trade-offs. And for most of those subjective trade-offs, the only correct answer to the question why something is the way it is, is simply "because Matz said so".
There are certainly other choices:
Lisp doesn't have operators at all. +, -, ::, >, = and so on are simply normal legal function names (variable names, actually), just like foo or bar?
(plus 1 2)
(+ 1 2)
Smalltalk almost doesn't have operators. The only special casing Smalltalk has is that methods which consist only of operator characters do not have to end with a colon. In particular, since there are no operators, all method calls have the same precedence and are evaluated strictly left-to-right: 2 + 3 * 4 is 20, not 14.
1 plus: 2
1 + 2
Scala almost doesn't have operators. Just like Lisp and Smalltalk, *, -, #::: and so on are simply legal method names. (Actually, they are also legal class, trait, type and field names.) Any method can be called either with or without a dot. If you use the form without the dot and the method takes only a single argument, then you can leave off the brackets as well. Scala does have precedence, though, although it is not user-definable; it is simply determined by the first character of the name. As an added twist, operator method names that end with a colon are inverted or right-associative, i.e. a :: b is equivalent to b.::(a) and not a.::(b).
1.plus(2)
1 plus(2)
1 plus 2
1.+(2)
1 +(2)
1 + 2
In Haskell, any function whose name consists of operator symbols is considered an operator. Any function can be treated as an operator by enclosing it in backticks and any operator can be treated as a function by enclosing it in brackets. In addition, the programmer can freely define associativity, fixity and precedence for user-defined operators.
plus 1 2
1 `plus` 2
(+) 1 2
1 + 2
There is no particular reason why Ruby couldn't support user-defined operators in a style similar to Scala. There is a reason why Ruby can't support arbitrary methods in operator position, simply because
foo plus bar
is already legal, and thus this would be a backwards-incompatible change.
Another thing to consider is that Ruby wasn't actually fully designed in advance. It was designed through its implementation. Which means that in a lot of places, the implementation is leaking through. For example, there is absolutely no logical reason why
puts(!true)
is legal but
puts(not true)
isn't. The only reason why this is so, is because Matz used an LALR(1) parser to parse a non-LALR(1) language. If he had designed the language first, he would have never picked an LALR(1) parser in the first place, and the expression would be legal.
The Refinement feature currently being discussed on ruby-core is another example. The way it is currently specified, will make it impossible to optimize method calls and inline methods, even if the program in question doesn't actually use Refinements at all. With just a simple tweak, it can be just as expressive and powerful, and ensure that the pessimization cost is only incurred for scopes that actually use Refinements. Apparently, the sole reason why it was specified this way, is that a) it was easier to prototype this way, and b) YARV doesn't have an optimizer, so nobody even bothered to think about the implications (well, nobody except Charles Oliver Nutter).
So, for basically any question you have about Ruby's design, the answer will almost always be either "because Matz said so" or "because in 1993 it was easier to implement that way".
The implementation doesn't have the additional complexity that would be needed to allow generic definition of new operators.
Instead, Ruby has a Yacc parser that uses a statically defined grammar. You get the built-in operators and that's it. Symbols occur in a fixed set of sentences in the grammar. As you have noted, the operators can be overloaded, which is more than most languages offer.
Certainly it's not because Matz was lazy.
Ruby actually has a fiendishly complex grammar that is roughly at the limit of what can be accomplished in Yacc. To get more complex would require using a less portable compiler generator or it would have required writing the parser by hand in C, and doing that would have limited future implementation portability in its own way as well as not providing the world with the Yacc input. That would be a problem because Ruby's Yacc source code is the only Ruby grammar documentation and is therefore "the standard".
Because Ruby has "syntax sugar" that allows for a variety of convenient syntax for preset situations. For example:
class Foo
def bar=( o ); end
end
# This is actually calling the bar= method with a parameter, not assigning a value
Foo.new.bar = 42
Here's a list of the operator expressions that may be implemented as methods in Ruby.
Because Ruby's syntax was designed to look roughly like popular OO languages, and those use the dot operator to call methods. The language it borrowed its object model from, Smalltalk, didn't use dots for messages, and in fact had a fairly "weird" syntax that many people found off-putting. Ruby has been called "Smalltalk with an Algol syntax," where Algol is the language that gave us the conventions you're talking about here. (Of course, there are actually more differences than just the Algol syntax.)
Missing braces was some "advantage" for ruby 1.8, but with ruby 1.9 you can't even write method_0 method_1 some param it will be rejected, so the language goes rather to the strict version instead of freeforms.

Difference between `->` and `lambda` in ruby [duplicate]

Pretty short question: Is it possible to use the Symbol#to_proc shorthand (e.g. lambda(&:upcase) with the stabby lambda syntax in Ruby? For example, I can say this:
p = lambda &:upcase
to get a Proc in p but I can't find an equivalent using ->. This:
p = -> &:upcase
doesn't work, of course.
Apparently, it is not supported.
I think it has something to do with the fact that proc and lambda are actually methods, and not keywords. They support the same features that we usually associate with each and the other methods from the Enumerable module. However, -> is a special language construct which is parsed separately.
I can't think of a reason why something like -> &:method shouldn't be possible, but as of now the syntax of the Ruby language simply doesn't allow it.

Why doesn't ruby support method overloading?

Instead of supporting method overloading Ruby overwrites existing methods. Can anyone explain why the language was designed this way?
"Overloading" is a term that simply doesn't even make sense in Ruby. It is basically a synonym for "static argument-based dispatch", but Ruby doesn't have static dispatch at all. So, the reason why Ruby doesn't support static dispatch based on the arguments, is because it doesn't support static dispatch, period. It doesn't support static dispatch of any kind, whether argument-based or otherwise.
Now, if you are not actually specifically asking about overloading, but maybe about dynamic argument-based dispatch, then the answer is: because Matz didn't implement it. Because nobody else bothered to propose it. Because nobody else bothered to implement it.
In general, dynamic argument-based dispatch in a language with optional arguments and variable-length argument lists, is very hard to get right, and even harder to keep it understandable. Even in languages with static argument-based dispatch and without optional arguments (like Java, for example), it is sometimes almost impossible to tell for a mere mortal, which overload is going to be picked.
In C#, you can actually encode any 3-SAT problem into overload resolution, which means that overload resolution in C# is NP-hard.
Now try that with dynamic dispatch, where you have the additional time dimension to keep in your head.
There are languages which dynamically dispatch based on all arguments of a procedure, as opposed to object-oriented languages, which only dispatch on the "hidden" zeroth self argument. Common Lisp, for example, dispatches on the dynamic types and even the dynamic values of all arguments. Clojure dispatches on an arbitrary function of all arguments (which BTW is extremely cool and extremely powerful).
But I don't know of any OO language with dynamic argument-based dispatch. Martin Odersky said that he might consider adding argument-based dispatch to Scala, but only if he can remove overloading at the same time and be backwards-compatible both with existing Scala code that uses overloading and compatible with Java (he especially mentioned Swing and AWT which play some extremely complex tricks exercising pretty much every nasty dark corner case of Java's rather complex overloading rules). I've had some ideas myself about adding argument-based dispatch to Ruby, but I never could figure out how to do it in a backwards-compatible manner.
Method overloading can be achieved by declaring two methods with the same name and different signatures. These different signatures can be either,
Arguments with different data types, eg: method(int a, int b) vs method(String a, String b)
Variable number of arguments, eg: method(a) vs method(a, b)
We cannot achieve method overloading using the first way because there is no data type declaration in ruby(dynamic typed language). So the only way to define the above method is def(a,b)
With the second option, it might look like we can achieve method overloading, but we can't. Let say I have two methods with different number of arguments,
def method(a); end;
def method(a, b = true); end; # second argument has a default value
method(10)
# Now the method call can match the first one as well as the second one,
# so here is the problem.
So ruby needs to maintain one method in the method look up chain with a unique name.
I presume you are looking for the ability to do this:
def my_method(arg1)
..
end
def my_method(arg1, arg2)
..
end
Ruby supports this in a different way:
def my_method(*args)
if args.length == 1
#method 1
else
#method 2
end
end
A common pattern is also to pass in options as a hash:
def my_method(options)
if options[:arg1] and options[:arg2]
#method 2
elsif options[:arg1]
#method 1
end
end
my_method arg1: 'hello', arg2: 'world'
Method overloading makes sense in a language with static typing, where you can distinguish between different types of arguments
f(1)
f('foo')
f(true)
as well as between different number of arguments
f(1)
f(1, 'foo')
f(1, 'foo', true)
The first distinction does not exist in ruby. Ruby uses dynamic typing or "duck typing". The second distinction can be handled by default arguments or by working with arguments:
def f(n, s = 'foo', flux_compensator = true)
...
end
def f(*args)
case args.size
when
...
when 2
...
when 3
...
end
end
This doesn't answer the question of why ruby doesn't have method overloading, but third-party libraries can provide it.
The contracts.ruby library allows overloading. Example adapted from the tutorial:
class Factorial
include Contracts
Contract 1 => 1
def fact(x)
x
end
Contract Num => Num
def fact(x)
x * fact(x - 1)
end
end
# try it out
Factorial.new.fact(5) # => 120
Note that this is actually more powerful than Java's overloading, because you can specify values to match (e.g. 1), not merely types.
You will see decreased performance using this though; you will have to run benchmarks to decide how much you can tolerate.
I often do the following structure :
def method(param)
case param
when String
method_for_String(param)
when Type1
method_for_Type1(param)
...
else
#default implementation
end
end
This allow the user of the object to use the clean and clear method_name : method
But if he want to optimise execution, he can directly call the correct method.
Also, it makes your test clearers and betters.
there are already great answers on why side of the question. however, if anyone looking for other solutions checkout functional-ruby gem which is inspired by Elixir pattern matching features.
class Foo
include Functional::PatternMatching
## Constructor Over loading
defn(:initialize) { #name = 'baz' }
defn(:initialize, _) {|name| #name = name.to_s }
## Method Overloading
defn(:greet, :male) {
puts "Hello, sir!"
}
defn(:greet, :female) {
puts "Hello, ma'am!"
}
end
foo = Foo.new or Foo.new('Bar')
foo.greet(:male) => "Hello, sir!"
foo.greet(:female) => "Hello, ma'am!"
I came across this nice interview with Yukihiro Matsumoto (aka. "Matz"), the creator of Ruby. Incidentally, he explains his reasoning and intention there. It is a good complement to #nkm's excellent exemplification of the problem. I have highlighted the parts that answer your question on why Ruby was designed that way:
Orthogonal versus Harmonious
Bill Venners: Dave Thomas also claimed that if I ask you to add a
feature that is orthogonal, you won't do it. What you want is
something that's harmonious. What does that mean?
Yukihiro Matsumoto: I believe consistency and orthogonality are tools
of design, not the primary goal in design.
Bill Venners: What does orthogonality mean in this context?
Yukihiro Matsumoto: An example of orthogonality is allowing any
combination of small features or syntax. For example, C++ supports
both default parameter values for functions and overloading of
function names based on parameters. Both are good features to have in
a language, but because they are orthogonal, you can apply both at the
same time. The compiler knows how to apply both at the same time. If
it's ambiguous, the compiler will flag an error. But if I look at the
code, I need to apply the rule with my brain too. I need to guess how
the compiler works. If I'm right, and I'm smart enough, it's no
problem. But if I'm not smart enough, and I'm really not, it causes
confusion. The result will be unexpected for an ordinary person. This
is an example of how orthogonality is bad.
Source: "The Philosophy of Ruby", A Conversation with Yukihiro Matsumoto, Part I
by Bill Venners, September 29, 2003 at: https://www.artima.com/intv/ruby.html
Statically typed languages support method overloading, which involves their binding at compile time. Ruby, on the other hand, is a dynamically typed language and cannot support static binding at all. In languages with optional arguments and variable-length argument lists, it is also difficult to determine which method will be invoked during dynamic argument-based dispatch. Additionally, Ruby is implemented in C, which itself does not support method overloading.

Rubyists: What is this called?

Say I have a pool of enumerables that I want to group by an attribute:
cars = Car.all.group_by(&:color)
Then I want to iterate over those cars like so:
cars.inject([]) do |stack, (color, cars)|
stack << cars.each do |car|
...
end
end
What is the term for the block variable extension (between the parentheses)?
I call it destructuring bind or destructuring assignment, that's what it's usually called in other programming languages. In Ruby, it's often called multiple assignment or parallel assignment. If you want to know what it's "officially" called, you could look it up in the Draft ISO Specification.
This is a weak form of pattern matching, one of the defining features of certain functional languages (ML, Haskell, and their ilk). In Python it's typically called unpacking. I don't know if Ruby has a particular term for it.

When is `eval` in Ruby justified?

"Is 'eval' supposed to be nasty?" inspired this one:
Mostly everybody agrees that eval is bad, and in most cases there is more elegant/safer replacement.
So I wanted to ask: if eval is misused that often, is it really needed as a language feature? Is it doing more evil than good?
Personally, the only place I find it useful is to interpolate strings provided in config file.
Edit: The intention of this question is to get as many real-life cases as possible when eval is the only or the best solution. So please, don't go into "should a language limit a programmer's creativity" direction.
Edit2: And when I say eval, of course I refer to evaling string, not passing ruby block to instance_eval or class_eval.
The only case I know of (other than "I have this string and I want to execute it") is dynamically dealing with local and global variables. Ruby has methods to get the names of local and global variables, but it lacks methods to get or set their values based on these names. The only way to do AFAIK is with eval.
Any other use is almost certainly wrong. I'm no guru and can't state categorically that there are no others, but every other use case I've ever seen where somebody said "You need eval for this," I've found a solution that didn't.
Note that I'm talking about string eval here, by the way. Ruby also has instance_eval, which can take either a string or a block to execute in the context of the receiver. The block form of this method is fast, safe and very useful.
When is it justified? I'd say when there's no reasonable alternative. I was able to think of one use where I can't think of an alternative: irb, which, if you dig deep enough (to workspace.rb, around line 80 in my copy if you're interested) uses eval to execute your input:
def evaluate(context, statements, file = __FILE__, line = __LINE__)
eval(statements, #binding, file, line)
end
That seems pretty reasonable to me - a situation where you specifically don't know what code you're going to have to execute until the very moment that you're asked to do so. Something dynamic and interactive seems to fit the bill.
The reason eval is there is because when you need it, when you really need it, there are no substitutes. There's only so much you can do with creative method dispatching, after all, and at some point you need to execute arbitrary code.
Just because a language has a feature that might be dangerous doesn't mean it's inherently a bad thing. When a language presumes to know more than its user, that's when there's trouble.
I'd argue that when you find a programming language devoid of danger, you've found one that's not very useful.
When is eval justified? In pragmatic terms, when you say it is. If it's your program and you're the programmer, you set the parameters.
There is one very important use-case for eval() which cannot (AFAIK) be achieved using anything else, and that is to find the corresponding object reference for a binding.
Say you have been passed a block but (for some reason) you need access to object context of the binding, you would do the following:
obj = eval('self', block.binding)
It is also useful to define the following:
class Proc
def __context__
eval('self', self.binding)
end
end
IMO mostly for Domain Specific Languages.
"Evaluation Options in Ruby" is an article by Jay Fields about it on InfoQ.
eval is a tool, it is neither inherently good nor evil. It is justified whenever you are certain it is the right tool for what you are trying to accomplish.
A tool like eval is about evaluating code at runtime vs. "compile" time. Do you know what the code is when you launch Ruby? Then you probably don't need eval. Is your code generating code during runtime? then you probably need to eval it.
For example, the methods/functions needed in a recursive decent parser depend on the language being parsed. If your application builds such a parser on-the-fly, then it might make sense to use eval. You could write a generalized parser, but it might not be as elegant a solution.
"Programatically filling in a letrec in Scheme. Macros or eval?" is a question I posted about eval in Scheme, where its use is mostly unavoidable.
In general eval is a useful language feature when you want to run arbitrary code. This should be a rare thing but maybe you are making your own REPL or you want to expose the ruby run-time to the end user for some reason. It could happen and that is why the feature exists. If you are using it to work around some part of the language (e.g. global variables) then either the language is flawed or your understanding of the language is flawed. The solution is typically not to use eval but to either better understand the language or pick a different language.
It's worth noting that in ruby particulary instance_eval and class_eval have other uses.
You very likely use eval on a regular basis without even realizing it; it's how rubygems loads the contents of a Gemspec. Via rubygems/lib/specification.rb:
# Note: I've removed some lines from that listing to illustrate the core concept
def self.load(file)
code = File.read(file)
begin
_spec = eval code, binding, file # <-------- EVAL HAPPENS HERE
if Gem::Specification === _spec
return _spec
end
warn "[#{file}] isn't a Gem::Specification (#{_spec.class} instead)."
rescue SignalException, SystemExit
raise
rescue SyntaxError, Exception => e
warn "Invalid gemspec in [#{file}]: #{e}"
end
nil
end
Typically, a gem specification would look like this:
Gem::Specification.new do |s|
s.name = 'example'
s.version = '0.1.0'
s.licenses = ['MIT']
s.summary = "This is an example!"
s.description = "Much longer explanation of the example!"
s.authors = ["Ruby Coder"]
s.email = 'rubycoder#example.com'
s.files = ["lib/example.rb"]
s.homepage = 'https://rubygems.org/gems/example'
s.metadata = { "source_code_uri" => "https://github.com/example/example" }
end
Note that the gemspec file simply creates a new object but does not assign it nor send it anywhere.
Trying to load or require this file (or even executing it with Ruby) will not return the Gem::Specification value. eval is the only way to extract the value defined by an external ruby file.
One use of eval is compiling another language to ruby:
ruby_code = "(def foo (f a b) (mapv f (cons a b)))".compile_to_ruby
# "foo_proc = ->(f a b) { mapv_proc.call(f, (cons_proc.call(a, b)) }"
eval ruby_code
I use a 3D modeling software that implemented Ruby for writing custom text macros. In that software we are given access to model data in the form of name:value pairs accessed using the following format:
owner.name
#=> value
So for a 36 inch tall cabinet, I could access the height and convert its value to feet like so:
owner.height.to_f / 12
The main problem is that objects in that software have no unique identifiers aside from something called their schedule_number. If I want to name a variable using the schedule_number in the variable name so that I can call and use that value elsewhere, the only possible way I know to do that is by using eval:
eval "#{owner.schedule_number} = owner.height"

Resources