How to rotate an image x degrees then move in that direction? - html5-canvas

I'm a newbie to KineticJS and have been going through the tutorials. I want to take an image that has a 'front' and rotate it a random number of degrees and then have it move forward a number of pixels/inches in that new direction.
I was able to use this rotation tutorial to rotate my image.
I see how to use transitionTo to send an image to an x/y coordinate.
I'm having trouble tying the two together. I feel like I need randomly generate e a new x/y coordinate and then determine the degree difference between where my image is pointing and a line drawn from the center of the image to the new x/y point.
Does anyone have any tips for doing something like this? How would one draw two lines from one point and determine the angle between them?
Thanks in advance.

You have to calculate the new coordinates thanks to the law of cosines.
http://en.wikipedia.org/wiki/Law_of_cosines
Once you have calculated the angle, you have to be careful because you will get an absolute angle.
Don't hesitate if you need more help. I also have to do this calculation using KineticJS.
Good luck !
The JS Math Object will be useful I guess : http://www.w3schools.com/jsref/jsref_obj_math.asp

Related

How to determine camera location from view matrix?

for a personal project, I've created a simple 3D engine in python using as little libraries as possible. I did what I wanted - I am able to render simple polygons, and have a movable camera. However, there is a problem:
I implemented a simple flat shader, but in order for it to work, I need to know the camera location (the camera is my light source). However, the problem is that I have no way of knowing the camera's location in the world space. At any point, I am able to display my view matrix, but I am unsure about how to extract the camera's location from it, especially after I rotate the camera. Here is a screenshot of my engine with the view matrix. The camera has not been rotated yet and it is very simple to extract its location (0, 1, 4).
However, upon moving the camera to a point between the X and Z axes and pointing it upwards (and staying at the same height), the view matrix changes to this:
It is obvious now that the last column cannot be taken directly to determine the camera location (it should be something like (4,1,4) on the last picture).
I have tried a lot of math, but I can't figure out the way to determine the camera x,y,z location from the view matrix. I will appreciate any and all help in solving this, as it seems to be a simple problem, yet whose solution eludes me. Thank you.
EDIT:
I was advised to transform a vertex (0,0,0,1) by my view matrix. This, however, does not work. See the example (the vertex obviously is not located at the printed coordinates):
Just take the transform of the vector (0,0,0,1) with the modelview matrix: Which is simply the rightmost column of the modelview matrix.
EDIT: #ampersander: I wonder why you're trying to work with the camera location in the first place, if you assume the source of illumination to be located at the camera's position. In that case, just be aware, that in OpenGL there is no such thing as a camera, and in fact, what the "view" transform does, is move everything in the world around so that where you assume your camera to be ends up at the coordinate origin (0,0,0).
Or in other words: After the modelview transform, the transformed vertex position is in fact the vector from the camera to the vertex, in view space. Which means that for your assumed illumination calculation the direction toward the light source, is the negative vertex position. Take that, normalize it to unit length and stick it into the illumination term.

Find my camera's 3D position and orientation according to a 2D marker

I am currently building an Augmented Reality application and stuck on a problem that seem quite easy but is very hard to me ... The problem is as follow:
My device's camera is calibrated and detect a 2D marker (such as a QRCode). I know the focal length, the sensor's position, the distance between my camera and the center of the marker, the real size of the marker and the coordinates of the 4 corners of the marker and of it center on the 2D image I got from the camera. See the following image:
On the image, we know the a,b,c,d distances and the coordinates of the red dots.
What I need to know is the position and the orientation of the camera according to the marker (as represented on the image, the origin is the center of the marker).
Is there an easy and fast way to do so? I tried some method imagined by myself (using Al-Kashi's formulas), but this ended with too much errors :(. Could someone point out a way to get me out of this?
You can find some example code for the EPnP algorithm on this webpage. This code consists in one header file and one source file, plus one file for the usage example, so this shouldn't be too hard to include in your code.
Note that this code is released for research/evaluation purposes only, as mentioned on this page.
EDIT:
I just realized that this code needs OpenCV to work. By the way, although this would add a pretty big dependency to your project, the current version of OpenCV has a builtin function called solvePnP, which does what you want.
You can compute the homography between the image points and the corresponding world points. Then from the homography you can compute the rotation and translation mapping a point from the marker's coordinate system into the camera's coordinate system. The math is described in the paper on camera calibration by Zhang.
Here's an example in MATLAB using the Computer Vision System Toolbox, which does most of what you need. It is using the extrinsics function, which computes a 3D rotation and a translation from matching image and world points. The points need not come from a checkerboard.

Getting coordinates of the mouse in relation to 3D space in THREE.js

I have struggled for the past 3 weeks trying to figure this out. If anyone could help me I would appreciate it so much.
I'm developing a game similar to Geometry Wars in where I have a triangle in the middle of the screen which you can move around.
The problem is I need the triangle to rotate and face toward the direction of the mouse curser. I don't need to worry about the z-axis per-say as I always have the camera in a fixed position (z=500) and I am treating the scene as a "2D scene" - all the action occurs on the z=0 plane.
Calculating the angle between the triangle and the mouse is elementary:
targetAngle = Math.atan2(mouseCoord.y-this.position.y, mouseCoord.x-this.position.x)
where this is the mesh.
The problem is that the mouseCoords are in standed Dom window format whilst the position of the triangle is in Three.js format.
Q) How would I convert the mouse coords to represent the coords on the z=0 plane where the triangle is?
I have tryed so many ways including ray intersection but nothing works ;(
Thank you all for your help and thank you so much for an amazing framework!!!!
I don't actually see the problem. use the THREE.vector3 with the z coord in 0. then use something like triangle.rotate(THREE.vector3(targetAngle,0,0) or something
I suspect your intersection isn't working because of a CSS offset by your canvas within the DOM.
If you need the triangle to look at something specific, you should simply be able to use the "lookAt" method of the triangle.
To have it look at the camera for example:
triangleMesh.lookAt(camera.position);

How to change the rotation order in cocos3d

I'm a fresh in cocos3d, now I have a problem.
In cocos3d, I want to rotate a node. I got the angles in x axis, y axis, z axis, then I used the property:rotation to rotate, like this:
theNodeToBeRotated.rotation = cc3v(x,y,z);
But I found out it didn't rotate as I expected, because the document said the rotate order is y-x-z.
I want to change the order to x-y-z. Can anyone let me know how?
You might need to clarify further regarding the following: "it didn't rotate as I expected"
OpenGL ES (and ergo, cocos3D) uses the y-axis as up so the rotation order is still x-y-z. If you are importing a model, you then need to take into account the 3D editor's co-ordinate system and adapt accordingly.
If you are not used to working with three-dimensional representations, the leap from 2D to 3D can be a significant hurdle. Within Cocos3D:
the x-axis is positive on the right and negative on the left
the y-axis is positive upwards and negative downwards
the z-axis is positive moving towards you and negative moving away from you
Envisage those three lines of axis, or even better, a piece of string.
If you are rotating around the x-axis, hold the string horizontally from left to right: the object would rotating towards you or away from you.
If you are rotating around the y-axis, hold the string vertically from feet to head: the object would rotate as if like a revolving door.
If you are rotating around the z-axis, hold one end close to your chest and the other end as far away as possible: the object would rotate similar to a clock face.
-- Update
I heavily wouldn't recommend changing the rotation order as it is the OpenGL standard to use Y-X-Z. If you wish to modify it, take a look at CC3GLMatrixMath and look for kmMat4RotationYXZ - there is also kmMat4RotationZYX. If you want to have X-Y-Z, you would need to construct your own rotation matrix and update accordingly in CC3GLMatrix and CC3GLMatrixMath.
As a reference, you also have the OpenGL Red book - it should have some suggestions for you.

OpenGL : Line jittering with large scene and small values

I'm currently drawing a 3D solar system and I'm trying to draw the path of the orbits of the planets. The calculated data is correct in 3D space but when I go towards Pluto, the orbit line shakes all over the place until the camera has come to a complete stop. I don't think this is unique to this particular planet but given the distance the camera has to travel I think its more visible at this range.
I suspect its something to do with the frustum but I've been plugging values into each of the components and I can't seem to find a solution. To see anything I'm having to use very small numbers (E-5 magnitude) for the planet and nearby orbit points but then up to E+2 magnitude for the further regions (maybe I need to draw it twice with different frustums?)
Any help greatly appreciated...
Thanks all for answering but my solution to this was to draw it with the same matrices that were drawing the planet since it wasn't bouncing around as well. So the solution really is to code better really, sorry.

Resources