How to determine the number of redundant address bits? - avr

A memory module has a data bus that is 128 bits wide. If module holds 4GB (2^31 bytes), how many address bits are redundant?
I believe there is some sort of formula (if not a formula a logical procedure) which we can use to find out the address bus then from there we can find out the redundant number of address bits. I don't have a basic idea of how these things are related: address bus, bus width, data bus.etc.

Each line on one of those parallel buses represents one bit of information. This is why the number of lines that comprise the bus is also referred to its width in bits.
The address bus is used to send the address to be read from or written to to the memory module. Because each line can 'transport' only one bit multiple lines are used in parallel.
For example, to be able to address 256 different locations in the memory, (at least) 8 lines are required for the address bus (because 2^8 = 256). Those 4 billion memory locations will therefor need 32 bus lines on the address bus, the address bus is 32 bits wide.
Note that I used the word "memory location" above, because the address sent to the memory module may refer to bytes or to some other unit of storage, like "words" (2 bytes) or "double-words" (4 bytes) or something else.
How big the minumum unit of storage that can be directly addressed is depends on the memory module and its internal organisation.
A memory module with a bus width of 128 bits for the data bus can send or receive 128 bits = 16 bytes at the same time. For this kind of memory the smallest addressable unit may be 128 bits, so that it could be accessed only in blocks of 16 bytes, which are usually aligned on multiples of this block size.
In that case, the first block of 16 bytes would be addressed by address 0 and would occupy the first 16 bytes of memory. Then at address 1 would be the next block, starting at byte #16. Address 2 gives 16 bytes from byte #32, and so on.
So, if each address on the address bus is used to address 16 bytes at the same time, less addresses will be needed to access the whole memory as compared to byte-wise addressing.
To be able to address each byte of those 4GB individually, the address bus needs to be 32 bits wide (2^32 bytes= 4GB). If, however, only whole blocks of 16 bytes can be addresses individually, one will only need (2^32)/16 different addressed to address the whole memory. 16 = 2^4, so (2^32)/(2^4) = 2^28. -> 28 bits would be needed to address each whole block of 16 bytes (=128 bits) and the width of the address bus could potentially be reduced to 28 lines.

Related

Relation between size of address bus and memory size; memory Segmentation in 8086

My question is related to memory segmentation in 8086. I learnt that,
8086 has a 20 bit address bus. And so it can address 2^20 different addresses. Which means it has an memory size of 2^20, i.e, 1MB.
I have a few doubts:
What I understand from the fact that 8086 has a 20 bit address bus is that it could have 2^20 different combinations of 0s and 1s, each of which represents one physical address. What I don't understand is that how does 2^20 different address locations mean 1 MB of addressable memory? How is total number of different addresses locations related to memory size (in Megabytes)?
Also, correct me if I'm wrong, the 16 bit segment registers in 8086 hold the starting address of the different segments in the memory (Code, Stack, Data, Extra).My question is, aren't the addresses in memory of 20 bits? Then how can the 16 bit register hold 20 bit addresses? If it contains the upper 16 bit of the 20 bit address, how does the processor make out to which exact address location it has to point?
P.S: I am a beginner is micro-processors and total reliant on self study, so kindly excuse if my questions seem a bit silly.
Thanks in advance.
For this question, its important to remember there is a different between the number of possible memory addresses and the amount of actual memory (RAM) installed in the system. For the 8086, memory addresses are 20-bits long as you note, so that means there are 2^20 possible memory addresses (which is exactly 1 MiB in size since 1 MiB is 1024 or 2^10 KiB and 1 KiB is 1024 or 2^10 Bytes). This does NOT mean the system has 1 MiB worth of RAM necessarily, it very likely has less but the most addresses the 8086 could possibly address is 1 MiB; so if nothing but RAM was in the address space, the most RAM it could possibly have is 1 MiB. Frequently, you might have gaps in the address space not filled with anything, some of the address space is used for ROM or other peripherals. So, that size of the address space is 1 MiB but that does not mean there is 1 MiB of RAM/memory in the system.
Correct, the segment registers are all 16-bits for the 8086. A memory address is created by combining the appropriate segment register with the argument (the argument being the result of whatever the addressing mode being used by the instruction) by adding the argument to the segment register's value shifted by 4 bits. So, if for example the ss is 0x1111, sp is at 0x2222 and you preform a push ax instruction, the 20-bit address to which the value is pushed is (ss << 4) + sp or 0x11110 + 0x02222 = 0x13332. More information can be found on Wikipedia under the Real Mode section: https://en.wikipedia.org/wiki/X86_memory_segmentation

How is byte addressing implemented in modern computers?

I have trouble understanding how in say a 32-bit computer byte addressing is achieved:
Is the ram itself byte addressable meaning the first byte has address 0 and the second 1 etc? In this case, wouldn't is take 4 read cycles to read a 32-bit word and waste the width of the data bus?
Or does the ram consist of 32-bit words meaning address 0 points to the first 4 bytes and address 2 points to bytes 5 to 8? In this case I would expect the ram interface to make byte addressing possible (from the cpu's point of view)
Think of RAM as 8 bit wide structure with N entries. N is often the size quoted when referring to memory (256 MB - 256M entries, 2GB - 2G entries etc, B is for bytes). When you access this memory, the smallest unit you can address is one of these entries which is 8 bits (1 byte). Since you can only access it at byte level, we call it byte addressable memory.
Now coming to your question about accessing this memory, we do not just access a byte. Most of the time, memory accesses are sent through caches which are there to reduce memory access latency. Caches store data at a higher granularity than a byte or word, normally it is multiple of words. In doing so, caches explore a property called "locality". Locality means, there is a high chance that we either access this data item or a near by data item very soon. So fetching not just the byte, but all the adjacent bytes is not a waste. Think of it as an investment for future, saves you multiple data fetches that you would have done otherwise.
Memory addresses in RAM start with 0th address and they are accessed using the registers with capacity of 8 bit register or 32 bit registers. Based on these registers the value from specific address is accessed by the CPU. If you really need to understand how it works, you will need to run couple of programs using Assembly language to navigate in the physical memory by reading the values directly using registers and register move commands.

Addressing Size Regarding Bytes

Just to make sure, does every single address contain one byte? So say you had theoretical addresses FFF0 and FFFF: there are 16 values between these two addresses, which means between them they contain 16 bytes, or 8 x 16 bits? Every individual address is linked to a single byte?
Just to make sure, does every single address contain one byte?
...which means between them they contain 16 bytes, or 8 x 16 bits?
Every individual address is linked to a single byte?
Yes to all three questions.
Which is why the limitation with 32-bit addressing, you can only access 2^32 bytes == 4,294,967,296 bytes == 4 GiB. Each addressable memory location gives access to 1 byte.
If we could access 2 bytes with one address, then that limit would have been 8 GiB. And the architecture of modern chips and all software would have to be modified to determine whether they want both bytes or just the first or the second. So you'd need, say, 1 more bit to determine that. Guess what, if you had 33-bit machines, that's what we'd get...max address-able space of 8 GiB. Which is still effectively 1-byte-containing addresses. Workarounds do exist but that's not related to your questions.
* GiB = Binary GigaBytes.
Note that this is not related to "types" where a char is 1 byte and an int is 4 bytes. Programming languages compensate for that when trying to access the value of a stored variable/data stored at a location(s). And they are actually calculated as total bits rather than total bytes. So an int is considered as 32 bits rather than 4 bytes. When C fetches an int's value from memory, it will fetch all 4 bytes even though the address of the int refers to just one, the address of the first byte.
Yes. Addresses map to bytes 1 to 1, even if they expect you to work with a word size of two or four bytes at a time.

Operating System Logical and Physical Address Mapping

Question is here:
Consider a logical-address space of 32 pages with page size 512 words,
mapped onto a physical memory of 128 frames.
I want to know if my attempting calculation below is correct:
so far I have come the:
**
32 pages = 2^5 bits
512 words = 2^9 bits
128 frames = 2^7 bits
**
How to calculate the logical address and physical address if i do not know the word size?
Word size depends on the computer architecture. Generally for a 32 bit CPU the word size is 32 bits(4 bytes) and for 64 bit CPU, it is 64 bits(8 bytes).
* Logical address will be generated by the CPU for a particular proceess, you don't need to calculate anything. As the CPU generates the logical address it will be mapped to physical address by Page Map Table or a fast Cache in Memory management unit(MMU).
* With respect to the details given above, your CPU generates the logical address of 14 bits, so it can address (2^14 words in memory). Assuming your processor is 32 bit, then it can access 2^16 bytes.
* Given the logical address of 14 bits, it looks in the page map table by using the first 9 bits for page. Then it finds the address where the page is actually located in the physical memory and it adds the offset to the physical address to find memory location in the Main memory.

I don't understand something in memory addressing

I have a very simple (n00b) question.
A 20-bit external address bus gave a 1 MB physical address space (2^20
= 1,048,576).(Wikipedia)
Why 1 MByte?
2^20 = 1,048,576 bit = 1Mbit = 128KByte not 1MB
I misunderstood something.
When you have 20 bits you can address up to 2^20. This is your range, not the number of bits.
I.e. if you have 8 bits your range is up to 255 (unsigned) not 2^8 bits.
So with 20 bits you can address up to 2^20 bytes i.e. 1MB
I.e. with 20 bits you can represent addresses from 0 up to 2^20 = 1,048,576. I.e. you can reference up to 1MB of memory.
1 << 20 addresses, that is 1,048,576 bytes addressable. Hence, 1 MB physical address space.
Because the smallest addressable unit of memory (in general - some architectures have small bit-addressable pieces of memory) is the byte, not the bit. That is, each address refers to a byte, rather than to a bit.
Why, you ask? Direct access to individual bits is almost never needed - and if you need it, you can still load the surrounding byte and get the bit with bit masks and shifts. Increasing the bits per address allows you to address more memory with the same address range.
Note that a byte doesn't have to be 8 bit, strictly speaking, though it's ubiquitous by now. But regardless of the byte size, you're grouping bits together to be able to handle larger quantities of them.

Resources