When should I use parallel-programming? - algorithm

What could be a typical or real problem for using parallel programming? It can be quite challenging to implement. On the internet they explain how to use it but not why.

Performance is the most common reason to use parallel programming. But: Not all programs will become faster by using parallel programming. In most cases your algorithm consists of parts that are parallelizable and parts, that are inherently sequential. You always have to reason about the potential performance gain of using parallel programming. In some cases the overhead for using it will actually make your program slower. Have a look at Amdahl's law to learn more about the potential performance improvements you can reach.
If you only want some examples of usage of parallel computations: There are some classes of algorithms that are inherently parallel, see this article the dwarfs of berkeley

Another reason for using a multithreaded application architecture is it's responsiveness. There are certain functions which block program execution for a certain amount of time, i.e. reads from files, network, waiting for user inputs, etc. While waiting like this does not consume CPU power, it often blocks or slows program flow.
Using threads in such case is simply a good practice to make the code clearer. Instead of using (often complex or unintuitive) checks for inputs, integrating those checks into program flow, manual switching between handling input and other tasks, a programmer may choose to use threads and let one thread wait for input, and the other i.e. to perform calculations.
In other words, multiple threads sometimes allow for better use of different resources at your computer's disposal: network, disk, input devices or simply monitor.
Generalization: using multiple threads (including parallel data processing) is advisable when the speed and responsiveness gains outweigh the synchronization costs and work required to parallelize the application.

The reason why there is increased interest in parallel programming is partly because the hardware we use today is more parallel. (multicore processors, many-core GPU). To fully benefit from this hardware you need to program in parallel.
Interestingly, parallel processing also improves battery life:
Having 4 cores at 1Ghz draws less power than one single core at 4Ghz.
A phone with a multicore CPU will try to run as much tasks as possible simultaneously, so it can turn off the CPU when all work is done. This is sometimes called "the rush to idle".
Now, some programs are more easy parallelize than others. You should not randomly try to parallelize your entire code base. But it can be a useful excersise to do so even if there is no business reason: then you will be more ready the day when you really need it.

There are very few problems which can't be solved more quickly by a parallel program than by a serial program. There are very few computers which do not have multiple processing units.
I conclude, therefore, that you should use parallel programming all the time.

Related

OpenMP and MPI Interaction

Hi currently I'm working on a program that I have working in parallel using MPI. I was wondering if I could gain additional speed in the for loops using OpenMP so I could get more out of each processor. Would I gain anything out of doing this? Also how would I go about it?
From experience it really depend on your problem and on how many MPI processes you are using.
Using large amount of MPI processes usually improve data locality, but your parallelization might not allow large amount of processes.
The thought that you will gain for sure a decent speedup is very often wrong :-(... But then if you reach the point where you cant use more MPI processes due to lack of parallel efficiency you will probably gain the possibility of using more cores efficiently.
From experience you should target a small number of thread (4-8, 1/2 of the socket cores count), especially if you have only small loops (which should be the case if you reach the max number of MPI processes).
A good intro of hybrid parallelism:
http://www.openmp.org/press-release/sc13-tutorial-hybrid-mpi-openmp-parallel-programming/

Emulate a very fast (virtual) CPU core

I know that the usual method when we want to make a big math computation faster is to use multiprocessing / parallel processing: we split the job in for example 4 parts, and we let 4 CPU cores run in parallel (parallelization). This is possible for example in Python with multiprocessing module: on a 4-core CPU, it would allow to use 100% of the processing power of the computer instead of only 25% for a single-process job.
But let's say we want to make faster a non-easily-splittable computation job.
Example: we are given a number generator function generate(n) that takes the previously-generated number as input, and "it is said to have 10^20 as period". We want to check this assertion with the following pseudo-code:
a = 17
for i = 1..10^20
a = generate(a)
check if a == 17
Instead of having a computer's 4 CPU cores (3.3 Ghz) running "in parallel" with a total of 4 processes, is it possible to emulate one very fast single-core CPU of 13.2 Ghz (4*3.3) running one single process with the previous code?
Is such technique available for a desktop computer? If not, is it available on cloud computing platforms (AWS EC2, etc.)?
Single-threaded performance is extremely valuable; it's much easier to write sequential code than to explicitly expose thread-level parallelism.
If there was an easy and efficient general-purpose way to do what you're asking which works when there is no parallelism in the code, it would already be in widespread use. Either internally inside multi-core CPUs, or in software if it required higher-level / larger-scale code transformations.
Out-of-order CPUs can find and exploit instruction-level parallelism within a single thread (over short distances, like a couple hundred instructions), but you need explicit thread-level parallelism to take advantage of multiple cores.
This is similar to How does a single thread run on multiple cores? over on SoftwareEnginnering.SE, except that you've already ruled out any easy-to-find parallelism including instruction-level parallelism. (And the answer is: it doesn't. It's the hardware of a single core that finds the instruction-level parallelism in a single thread; my answer there explains some of the microarchitectural details of how that works.)
The reverse process: turning one big CPU into multiple weaker CPUs does exist, and is useful for running multiple threads which don't have much instruction-level parallelism. It's called SMT (Simultaneous MultiThreading). You've probably heard of Intel's Hyperthreading, the most widely known implementation of SMT. It trades single-threaded performance for more throughput, keeping more execution units fed with useful work more of the time. The cost of building a single wide core grows at least quadratically, which is why typical desktop CPUs don't just have a single massive core with 8-way SMT. (And note that a really wide CPU still wouldn't help with a totally dependent instruction stream, unless the generate function has some internal instruction-level parallelism.)
SMT would be good if you wanted to test 8 different generate() functions at once on a quad-core CPU. Without SMT, you could alternate in software between two generate chains in one thread, so out-of-order execution could be working on instructions from both dependency chains in parallel.
Auto-parallelization by compilers at compile time is possible for source that has some visible parallelism, but if generate(a) isn't "separable" (not the correct technical term, I think) then you're out of luck.
e.g. if it's return a + hidden_array[static_counter++]; then the compiler can use math to prove that summing chunks of the array in parallel and adding the partial sums will still give the same result.
But if there's truly a serial dependency through a (like even a simple LCG PRNG), and the software doesn't know any mathematical tricks to break the dependency or reduce it to a closed form, you're out of luck. Compilers do know tricks like sum(0..n) = n*(n+1)/2 (evaluated slightly differently to avoid integer overflow in a partial result), or a+a+a+... (n times) is a * n, but that doesn't help here.
There is a scheme studied mostly in the academy called "Thread Decomposition". It aims to do more or less what you ask about - given a single-threaded code, it tries to break it down into multiple threads in order to divide the work on a multicore system. This process can be done by a compiler (although this requires figuring out all possible side effects at compile time which is very hard), by a JIT runtime, or through HW binary-translation, but each of these methods has complicated limitations and drawbacks.
Unfortunately, other than being automated, this process has very little appeal as it can hardly match true manual parallelization done by a person how understands the code. It also doesn't simply scale performance according to the number of threads, since it usually incurs a large overhead in the form of code that has to be duplicated.
Example paper by some nice folks from UPC in Barcelona: http://ieeexplore.ieee.org/abstract/document/5260571/

When does Erlang's parallelism overcome its weaknesses in numeric computing?

With all the hype around parallel computing lately, I've been thinking a lot about parallelism, number crunching, clusters, etc...
I started reading Learn You Some Erlang. As more people are learning (myself included), Erlang handles concurrency in a very impressive, elegant way.
Then the author asserts that Erlang is not ideal for number crunching. I can understand that a language like Erlang would be slower than C, but the model for concurrency seems ideally suited to things like image handling or matrix multiplication, even though the author specifically says its not.
Is it really that bad? Is there a tipping point where Erlang's strength overcomes its local speed weakness? Are/what measures are being taken to deal with speed?
To be clear: I'm not trying to start a debate; I just want to know.
It's a mistake to think of parallelism as only about raw number crunching power. Erlang is closer to the way a cluster computer works than, say, a GPU or classic supercomputer.
In modern GPUs and old-style supercomputers, performance is all about vectorized arithmetic, special-purpose calculation hardware, and low-latency communication between processing units. Because communication latency is low and each individual computing unit is very fast, the ideal usage pattern is to load the machine's RAM up with data and have it crunch it all at once. This processing might involve lots of data passing among the nodes, as happens in image processing or 3D, where there are lots of CPU-bound tasks to do to transform the data from input form to output form. This type of machine is a poor choice when you frequently have to go to a disk, network, or some other slow I/O channel for data. This idles at least one expensive, specialized processor, and probably also chokes the data processing pipeline so nothing else gets done, either.
If your program requires heavy use of slow I/O channels, a better type of machine is one with many cheap independent processors, like a cluster. You can run Erlang on a single machine, in which case you get something like a cluster within that machine, or you can easily run it on an actual hardware cluster, in which case you have a cluster of clusters. Here, communication overhead still idles processing units, but because you have many processing units running on each bit of computing hardware, Erlang can switch to one of the other processes instantaneously. If it happens that an entire machine is sitting there waiting on I/O, you still have the other nodes in the hardware cluster that can operate independently. This model only breaks down when the communication overhead is so high that every node is waiting on some other node, or for general I/O, in which case you either need faster I/O or more nodes, both of which Erlang naturally takes advantage of.
Communication and control systems are ideal applications of Erlang because each individual processing task takes little CPU and only occasionally needs to communicate with other processing nodes. Most of the time, each process is operating independently, each taking a tiny fraction of the CPU power. The most important thing here is the ability to handle many thousands of these efficiently.
The classic case where you absolutely need a classic supercomputer is weather prediction. Here, you divide the atmosphere up into cubes and do physics simulations to find out what happens in each cube, but you can't use a cluster because air moves between each cube, so each cube is constantly communicating with its 6 adjacent neighbors. (Air doesn't go through the edges or corners of a cube, being infinitely fine, so it doesn't talk to the other 20 neighboring cubes.) Run this on a cluster, whether running Erlang on it or some other system, and it instantly becomes I/O bound.
Is there a tipping point where Erlang's strength overcomes its local speed weakness?
Well, of course there is. For example, when trying to find the median of a trillion numbers :) :
http://matpalm.com/median/question.html
Just before you posted, I happened to notice this was the number 1 post on erlang.reddit.com.
Almost any language can be parallelized. In some languages it's simple, in others it's a pain in the butt, but it can be done. If you want to run a C++ program across 8000 CPU's in a grid, go ahead! You can do that. It's been done before.
Erlang doesn't do anything that's impossible in other languages. If a single CPU running an Erlang program is less efficient than the same CPU running a C++ program, then two hundred CPU's running Erlang will also be slower than two hundred CPU's running C++.
What Erlang does do is making this kind of parallelism easy to work with. It saves developer time and reduces the chance of bugs.
So I'm going to say no, there is no tipping point at which Erlang's parallelism allows it to outperform another language's numerical number-crunching strength.
Where Erlang scores is in making it easier to scale out and do so correctly. But it can still be done in other languages which are better at number-crunching, if you're willing to spend the extra development time.
And of course, let's not forget the good old point that languages don't have a speed.
A sufficiently good Erlang compiler would yield perfectly optimal code. A sufficiently bad C compiler would yield code that runs slower than anything else.
There is pressure to make Erlang execute numeric code faster. The HiPe compiler compiles to native code instead of the BEAM bytecode for example, and it probably has its most effective optimization on code on floating points where it can avoid boxing. This is very beneficial for floating point code, since it can store values directly in FPU registers.
For the majority of Erlang usage, Erlang is plenty fast as it is. They use Erlang to write always-up control systems where the most important speed measurement that matters is low latency responses. Performance under load tends to be IO-bound. These users tend to stay away from HiPe since it is not as flexible/malleable in debugging live systems.
Now that servers with 128Gb of RAM are not that uncommon, and there's no reason they'll get even more memory, some IO-bound problems might shift over to be somewhat CPU bound. That could be a driver.
You should follow HiPe for the development.
Your examples of image manipulations and matrix multiplications seem to me as very bad matches for Erlang though. Those are examples that benefit from vector/SIMD operations. Erlang is not good at parallellism (where one does the same thing to multiple values at once).
Erlang processes are MIMD, multiple instructions multiple data. Erlang does lots of branching behind pattern matching and recursive loops. That kills CPU instruction pipelining.
The best architecture for heavily parallellised problems are the GPUs. For programming GPUs in a functional language I see the best potential in using Haskell for creating programs targeting them. A GPU is basically a pure function from input data to output data. See the Lava project in Haskell for creating FPGA circuits, if it is possible to create circuits so cleanly in Haskell, it can't be harder to create program data for GPUs.
The Cell architecture is very nice for vectorizable problems as well.
I think the broader need is to point out that parallelism is not necessarily or even typically about speed.
It is about how to express algorithms or programs in which the sequence of activities is partial-ordered.

MPI for multicore?

With the recent buzz on multicore programming is anyone exploring the possibilities of using MPI ?
I've used MPI extensively on large clusters with multi-core nodes. I'm not sure if it's the right thing for a single multi-core box, but if you anticipate that your code may one day scale larger than a single chip, you might consider implementing it in MPI. Right now, nothing scales larger than MPI. I'm not sure where the posters who mention unacceptable overheads are coming from, but I've tried to give an overview of the relevant tradeoffs below. Read on for more.
MPI is the de-facto standard for large-scale scientific computation and it's in wide use on multicore machines already. It is very fast. Take a look at the most recent Top 500 list. The top machines on that list have, in some cases, hundreds of thousands of processors, with multi-socket dual- and quad-core nodes. Many of these machines have very fast custom networks (Torus, Mesh, Tree, etc) and optimized MPI implementations that are aware of the hardware.
If you want to use MPI with a single-chip multi-core machine, it will work fine. In fact, recent versions of Mac OS X come with OpenMPI pre-installed, and you can download an install OpenMPI pretty painlessly on an ordinary multi-core Linux machine. OpenMPI is in use at Los Alamos on most of their systems. Livermore uses mvapich on their Linux clusters. What you should keep in mind before diving in is that MPI was designed for solving large-scale scientific problems on distributed-memory systems. The multi-core boxes you are dealing with probably have shared memory.
OpenMPI and other implementations use shared memory for local message passing by default, so you don't have to worry about network overhead when you're passing messages to local processes. It's pretty transparent, and I'm not sure where other posters are getting their concerns about high overhead. The caveat is that MPI is not the easiest thing you could use to get parallelism on a single multi-core box. In MPI, all the message passing is explicit. It has been called the "assembly language" of parallel programming for this reason. Explicit communication between processes isn't easy if you're not an experienced HPC person, and there are other paradigms more suited for shared memory (UPC, OpenMP, and nice languages like Erlang to name a few) that you might try first.
My advice is to go with MPI if you anticipate writing a parallel application that may need more than a single machine to solve. You'll be able to test and run fine with a regular multi-core box, and migrating to a cluster will be pretty painless once you get it working there. If you are writing an application that will only ever need a single machine, try something else. There are easier ways to exploit that kind of parallelism.
Finally, if you are feeling really adventurous, try MPI in conjunction with threads, OpenMP, or some other local shared-memory paradigm. You can use MPI for the distributed message passing and something else for on-node parallelism. This is where big machines are going; future machines with hundreds of thousands of processors or more are expected to have MPI implementations that scale to all nodes but not all cores, and HPC people will be forced to build hybrid applications. This isn't for the faint of heart, and there's a lot of work to be done before there's an accepted paradigm in this space.
I would have to agree with tgamblin. You'll probably have to roll your sleeves up and really dig into the code to use MPI, explicitly handling the organization of the message-passing yourself. If this is the sort of thing you like or don't mind doing, I would expect that MPI would work just as well on multicore machines as it would on a distributed cluster.
Speaking from personal experience... I coded up some C code in graduate school to do some large scale modeling of electrophysiologic models on a cluster where each node was itself a multicore machine. Therefore, there were a couple of different parallel methods I thought of to tackle the problem.
1) I could use MPI alone, treating every processor as it's own "node" even though some of them are grouped together on the same machine.
2) I could use MPI to handle data moving between multicore nodes, and then use threading (POSIX threads) within each multicore machine, where processors share memory.
For the specific mathematical problem I was working on, I tested two formulations first on a single multicore machine: one using MPI and one using POSIX threads. As it turned out, the MPI implementation was much more efficient, giving a speed-up of close to 2 for a dual-core machine as opposed to 1.3-1.4 for the threaded implementation. For the MPI code, I was able to organize operations so that processors were rarely idle, staying busy while messages were passed between them and masking much of the delay from transferring data. With the threaded code, I ended up with a lot of mutex bottlenecks that forced threads to often sit and wait while other threads completed their computations. Keeping the computational load balanced between threads didn't seem to help this fact.
This may have been specific to just the models I was working on, and the effectiveness of threading vs. MPI would likely vary greatly for other types of parallel problems. Nevertheless, I would disagree that MPI has an unwieldy overhead.
No, in my opinion it is unsuitable for most processing you would do on a multicore system. The overhead is too high, the objects you pass around must be deeply cloned, and passing large objects graphs around to then run a very small computation is very inefficient. It is really meant for sharing data between separate processes, most often running in separate memory spaces, and most often running long computations.
A multicore processor is a shared memory machine, so there are much more efficient ways to do parallel processing, that do not involve copying objects and where most of the threads run for a very small time. For example, think of a multithreaded Quicksort. The overhead of allocating memory and copying the data to a thread before it can be partioned will be much slower with MPI and an unlimited number of processors than Quicksort running on a single processor.
As an example, in Java, I would use a BlockingQueue (a shared memory construct), to pass object references between threads, with very little overhead.
Not that it does not have its place, see for example the Google search cluster that uses message passing. But it's probably not the problem you are trying to solve.
MPI is not inefficient. You need to break the problem down into chunks and pass the chunks around and reorganize when the result is finished per chunk. No one in the right mind would pass around the whole object via MPI when only a portion of the problem is being worked on per thread. Its not the inefficiency of the interface or design pattern thats the inefficiency of the programmers knowledge of how to break up a problem.
When you use a locking mechanism the overhead on the mutex does not scale well. this is due to the fact that the underlining runqueue does not know when you are going to lock the thread next. You will perform more kernel level thrashing using mutex's than a message passing design pattern.
MPI has a very large amount of overhead, primarily to handle inter-process communication and heterogeneous systems. I've used it in cases where a small amount of data is being passed around, and where the ratio of computation to data is large.
This is not the typical usage scenario for most consumer or business tasks, and in any case, as a previous reply mentioned, on a shared memory architecture like a multicore machine, there are vastly faster ways to handle it, such as memory pointers.
If you had some sort of problem with the properties describe above, and you want to be able to spread the job around to other machines, which must be on the same highspeed network as yourself, then maybe MPI could make sense. I have a hard time imagining such a scenario though.
I personally have taken up Erlang( and i like to so far). The messages based approach seem to fit most of the problem and i think that is going to be one of the key item for multi core programming. I never knew about the overhead of MPI and thanks for pointing it out
You have to decide if you want low level threading or high level threading. If you want low level then use pThread. You have to be careful that you don't introduce race conditions and make threading performance work against you.
I have used some OSS packages for (C and C++) that are scalable and optimize the task scheduling. TBB (threading building blocks) and Cilk Plus are good and easy to code and get applications of the ground. I also believe they are flexible enough integrate other thread technologies into it at a later point if needed (OpenMP etc.)
www.threadingbuildingblocks.org
www.cilkplus.org

Multiple threads and performance on a single CPU

Is here any performance benefit to using multiple threads on a computer with a single CPU that does not having hyperthreading?
In terms of speed of computation, No. In fact things will slow down due to the overhead of managing the threads.
In terms of responsiveness, yes. You can for example have one thread wait on an IO operation and have another run a GUI at the same time.
It depends on your application. If it spends all its time using the CPU, then multithreading will just slow things down - though you may be able to use it to be more responsive to the user and thus give the impression of better performance.
However, if your code is limited by other things, for example using the file system, the network, or any other resource, then multithreading can help, since it allows your application to behave asynchronously. So while one thread is waiting for a file to load from disk, another can be querying a remote webserver and another redrawing the GUI, while another is doing various calculations.
Working with multiple threads can also simplify your business logic, since you don't have to pay so much attention to how various independent tasks need to interleave. If the operating system's scheduling logic is better than yours, then you may indeed see improved performance.
You can consider using multithreading on a single CPU
If you use network resources
If you do high-intensive IO operations
If you pull data from a database
If you exploit other stuff with possible delays
If you want to make your app with ultraspeed reaction
When you should not use multithreading on a single CPU
High-intensive operations which do almost 100% CPU usage
If you are not sure how to use threads and synchronization
If your application cannot be divided into several parallel processes
Yes, there is a benefit of using multiple threads (or processes) on a single CPU - if one thread is busy waiting for something, others can continue doing useful work.
However this can be offset by the overhead of task switching. You'll have to benchmark and/or profile your application on production grade hardware to find out.
Regardless of the number of CPUs available, if you require preemptive multitasking and/or applications with asynchronous components (i.e. pretty much anything that combines a responsive GUI with a non-trivial amount of computation or continuous I/O processing), multithreading performs much better than the alternative, which is to use multiple processes for each application.
This is because threads in the same process can exchange data much more efficiently than can multiple processes, because they share the same memory context.
See this Wikipedia article on computer multitasking for a fairly concise discussion of these issues.
Absolutely! If you do any kind of I/O, there is great advantage to having a multithreaded system. While one thread wait for an I/O operation (which are relatively slow), another thread can do useful work.

Resources