Prolog need to get it fix - prolog

The solution
ppath(X,Y,M,Path,[Y|Path]) :- edge(X,Y,M),
\+ memberchk(Y,Path).
path(X,Y,P,SoFar,Path) :- edge(X,W,M), \+
memberchk(W,SoFar),
path(W,Y,N,[W|SoFar],Path), P is M+N.
pravilo(X,Y,Z) :-
aggregate(min(W), P^path(X,Y,W,[],P),
Z).
After that i am trying to use ?- pravilo(a,z,M). get the result. but it says false.
My version SWI-Prolog (Multi-threaded, 64 bits, Version 6.4.1)
Thank You

You should avoid assert/retract as far as possible.
Your graph has a loop between f and g, then you can't use the naive path/4 predicate, or your program will loop.
To avoid looping, you should invert the path construction (now it's 'bottom up'), to 'top down' adding a further argument (an accumulator) to path/4, and check that a node isn't already visited before recursing.
You can use memberchk for the test.
edit: here is the code
path(X,Y,M,Path,[Y|Path]) :- edge(X,Y,M), \+ memberchk(Y,Path).
path(X,Y,P,SoFar,Path) :- edge(X,W,M), \+ memberchk(W,SoFar),
path(W,Y,N,[W|SoFar],Path), P is M+N.
this yields
?- path(a,z,W,[],P).
W = 27,
P = [z, e, j, b] ;
W = 26,
P = [z, g, b] ;
...
let's use library(aggregate) to complete the assignment:
pravilo(X,Y,Z) :-
aggregate(min(W), P^path(X,Y,W,[],P), Z).
now I get
?- pravilo(a,z,M).
M = 24.
edit To get (full) ordered paths, these changes are necessary in recursion base
path(X,Y,M,Path,FullPath) :-
edge(X,Y,M), \+ memberchk(Y,Path), reverse([Y|Path], FullPath).
and in top level predicate:
pravilo(X,Y,Z) :-
aggregate(min(W), P^path(X,Y,W,[X],P), Z).

Related

How do I see a detailed order (execution) for a Prolog query?

Let's say I have this Prolog program:
loves(vincent, mia).
loves(marcellus, mia).
jealous(A, B) :- loves(A, C), loves(B, C).
With query jealous(A,B). I'm very new to Prolog and I'd like to know how is it possible to see the exact order the program will be running and taking its ways for this query? I have tried using trace, jealous(A,B). command but it has only given me that:
Isn't there any more detailed solution for that? :/
Have you seen the Prolog Visualizer?
When you get to the page be sure to click on the icons in the upper right to learn more.
Enjoy.
Screenshot after step 10 of 49.
Screenshot for example given after all steps.
The Prolog Visualizer uses a slightly nonstandard way to enter a query by ending the query with a question mark (?), e.g.
jealous(A,B)?
If you do not post a query in the input area on the left you will receive an error, e.g.
The input for the Prolog Visualizer for your example is
loves(vincent, mia).
loves(marcellus, mia).
jealous(A, B) :- loves(A, C), loves(B, C).
jealous(A,B)?
When the Prolog Visualizer completes your example, notice the four results in green on the right
If you are using SWI-Prolog and after you understand syntactic unification, backtracking and write more advanced code you will find this of use:
Overview of the SWI Prolog Graphical Debugger
For other useful Prolog references see: Useful Prolog references
If the Prolog system has callable_property/2 and sys_rule/3, then one can code
a smart "unify" port as follows, showing most general unifiers (mgu's`):
:- op(1200, fx, ?-).
% solve(+Goal, +Assoc, +Integer, -Assoc)
solve(true, L, _, L) :- !.
solve((A, B), L, P, R) :- !, solve(A, L, P, H), solve(B, H, P, R).
solve(H, L, P, R) :- functor(H, F, A), sys_rule(F/A, J, B),
callable_property(J, sys_variable_names(N)),
number_codes(P, U), atom_codes(V, [0'_|U]), shift(N, V, W),
append(L, W, M), H = J, reverse(M, Z), triage(M, Z, I, K),
offset(P), write_term(I, [variable_names(Z)]), nl,
O is P+1, solve(B, K, O, R).
% triage(+Assoc, +Assoc, -Assoc, -Assoc)
triage([V=T|L], M, R, [V=T|S]) :- var(T), once((member(W=U, M), U==T)), W==V, !,
triage(L, M, R, S).
triage([V=T|L], M, [V=T|R], S) :-
triage(L, M, R, S).
triage([], _, [], []).
% shift(+Assoc, +Atom, -Assoc)
shift([V=T|L], N, [W=T|R]) :-
atom_concat(V, N, W),
shift(L, N, R).
shift([], _, []).
% offset(+Integer)
offset(1) :- !.
offset(N) :- write('\t'), M is N-1, offset(M).
% ?- Goal
(?- G) :-
callable_property(G, sys_variable_names(N)),
shift(N, '_0', M),
solve(G, M, 1, _).
Its not necessary to modify mgu's retrospectively, since a solution to a
Prolog query is the sequential composition of mgu's. Here is an example run:
?- ?- jealous(A,B).
[A_0 = X_1, B_0 = Y_1]
[H_1 = mia, X_1 = vincent]
[Y_1 = vincent]
A = vincent,
B = vincent ;
[Y_1 = marcellus]
A = vincent,
B = marcellus ;
Etc..
This is a preview of Jekejeke Prolog 1.5.0 the new
predicate sys_rule/3, its inspired by the new
predicate rule/2 of SWI-Prolog, but keeps the
clause/2 argument of head and body and uses a predicate
indicator.

(SWI)Prolog: Order of sub-goals

I have two, slightly different, implementations of a predicate, unique_element/2, in Prolog. The predicate succeeds when given an element X and a list L, the element X appears only once in the list. Below are the implementations and the results:
Implementation 1:
%%% unique_element/2
unique_element(Elem, [Elem|T]) :-
not(member(Elem, T)).
unique_element(Elem, [H|T]) :-
member(Elem, T),
H\==Elem,
unique_element(Elem, T),
!.
Results:
?- unique_element(X, [a, a, b, c, c, b]).
false.
?- unique_element(X, [a, b, c, c, b, d]).
X = a ;
X = d.
Implementation 2:
%%% unique_element/2
unique_element(Elem, [Elem|T]) :-
not(member(Elem, T)).
unique_element(Elem, [H|T]) :-
H\==Elem,
member(Elem, T),
unique_element(Elem, T),
!.
In case you didn't notice at first sight: H\==Elem and member(Elem, T) are flipped on the 2nd impl, rule 2.
Results:
?- unique_element(X, [a, a, b, c, c, b]).
X = a.
?- unique_element(X, [a, b, c, c, b, d]).
X = a ;
X = d.
Question: How does the order, in this case, affect the result? I realize that the order of the rules/facts/etc matters. The two specific rules that are flipped though, don't seem to be "connected" or affect each other somehow (e.g. a cut in the wrong place/order).
Note: We are talking about SWI-Prolog here.
Note 2: I am aware of, probably different and better implementations. My question here is about the order of sub-goals being changed.
H\==Elem is testing for syntactic inequality at the point in time when the goal is executed. But later unification might make variables identical:
?- H\==Elem, H = Elem.
H = Elem.
?- H\==Elem, H = Elem, H\==Elem.
false.
So here we test if they are (syntactically) different, and then they are unified nevertheless and thus are no longer different. It is thus just a temporary test.
The goal member(Elem, T) on the other hand is true if that Elem is actually an element of T. Consider:
?- member(Elem, [X]).
Elem = X.
Which can be read as
(When) does it hold that Elem is an element of the list [X]?
and the answer is
It holds under certain circumstances, namely when Elem = X.
If you now mix those different kinds of goals in your programs you get odd results that can only explained by inspecting your program in detail.
As a beginner, it is best to stick to the pure parts of Prolog only. In your case:
use dif/2 in place of \==
do not use cuts - in your case it limits the number of answers to two. As in
unique_element(X, [a,b,c])
do not use not/1 nor (\+)/1. It produces even more incorrectness. Consider unique_element(a,[a,X]),X=b. which incorrectly fails while X=b,unique_element(a,[a,X]) correctly succeeds.
Here is a directly purified version of your program. There is still room for improvement!
non_member(_X, []).
non_member(X, [E|Es]) :-
dif(X, E),
non_member(X, Es).
unique_element(Elem, [Elem|T]) :-
non_member(Elem, T).
unique_element(Elem, [H|T]) :-
dif(H,Elem),
% member(Elem, T), % makes unique_element(a,[b,a,a|Xs]) loop
unique_element(Elem, T).
?- unique_element(a,[a,X]).
dif(X, a)
; false. % superfluous
?- unique_element(X,[E1,E2,E3]).
X = E1, dif(E1, E3), dif(E1, E2)
; X = E2, dif(E2, E3), dif(E1, E2)
; X = E3, dif(E2, E3), dif(E1, E3)
; false.
Note how the last query reads?
When is X a unique element of (any) list [E1,E2,E3]?
The answer is threefold. Considering one element after the other:
X is E1 but only if it is different to E2 and E3
etc.
TL;DR: Read the documentation and figure out why:
?- X = a, X \== a.
false.
?- X \== a, X = a.
X = a.
I wonder why you stop so close from figuring it out yourself ;-)
There are too many ways to compare things in Prolog. At the very least, you have unification, which sometimes can compare, and sometimes does more; than you have equvalence, and its negation, the one you are using. So what does it do:
?- a \== b. % two different ground terms
true.
?- a \== a. % the same ground term
false.
Now it gets interesting:
?- X \== a. % a free variable and a ground term
true.
?- X \== X. % the same free variable
false.
?- X \== Y. % two different free variables
true.
I would suggest that you do the following: figure out how member/2 does its thing (does it use unification? equivalence? something else?) then replace whatever member/2 is using in all the examples above and see if the results are any different.
And since you are trying to make sure that things are different, try out what dif/2 does. As in:
?- dif(a, b).
or
?- dif(X, X).
or
?- dif(X, a).
and so on.
See also this question and answers: I think the answers are relevant to your question.
Hope that helps.
Here is another possibility do define unique_element/2 using if_/3 and maplist/2:
:- use_module(library(apply)).
unique_element(Y,[X|Xs]) :-
if_(Y=X,maplist(dif(Y),Xs),unique_element(Y,Xs)).
In contrast to #user27815's very elegant solution (+s(0)) this version does not build on clpfd (used by tcount/3). The example queries given by the OP work as expected:
?- unique_element(a,[a, a, b, c, c, b]).
no
?- unique_element(X,[a, b, c, c, b, d]).
X = a ? ;
X = d ? ;
no
The example provided by #false now succeeds without leaving a superfluous choicepoint:
?- unique_element(a,[a,X]).
dif(a,X)
The other more general query yields the same results:
?- unique_element(X,[E1,E2,E3]).
E1 = X,
dif(X,E3),
dif(X,E2) ? ;
E2 = X,
dif(X,E3),
dif(X,E1) ? ;
E3 = X,
dif(X,E2),
dif(X,E1) ? ;
no
Can you not define unique_element like tcount Prolog - count repetitions in list
unique_element(X, List):- tcount(=(X),List,1).

How to create list of list

I having a problem with predicate which creates list of list for example
?-listoflist([p v q, p, r], R).
R=[ [p,q],[p],[r] ]
So far i have:
:- op(500, xfy, v).
listoflist([],[]):-!.
listoflist([H], [[H]]):-!
listoflist([H|T], [Result]):-
change_to_list(H,Tmp),
listoflist(T, [Tmp|Result])..
change_to_list(X v Y, [X|List]):-
change_to_list(Y,List),!.
change_to_list(X,[X]).
For operator declarations, always look what Prolog already has and fit your own operators into it:
?- current_op(Pri,Fix,\/).
Pri = 500, Fix = yfx.
A left-associative operator makes much more sense here. Maybe you can reuse this, instead of defining your own? And in case you want your own, take the very same priorities.
:- op(500, yfx, v).
operands(Op) --> [Op], {functor(Op,Op,0)}.
operands(L v R) --> operands(L), operands(R).
expr_operands(Expr, Ops) :-
phrase(operands(Expr), Ops).
?- maplist(expr_operands, [p v q, p, r], R).
R = [[p,q],[p],[r]].
Your listoflists/2 should be simpler and doesn't need cuts:
listoflists([], []).
listoflists([X|Xs], [Y|Ys]) :-
change_to_list(X, Y),
listoflists(Xs, Ys).
The other predicate, change_to_list/2 seems fine to me.
Notice how you collect the results in the head of the clause, not in the recursive call!

Python counter in Prolog

In Python you can do
>>> import from collections counter
>>> Counter(['a','b','b','c'])
>>> Counter({'b': 2, 'a': 1, 'c': 1})
Is there something similar in Prolog? Like so:
counter([a,b,b,c],S).
S=[a/1,b/2,c/1].
This is my implementation:
counter([],List,Counts,Counts).
counter([H|T],List,Counts0,[H/N|Counts]):-
findall(H, member(H,List), S),
length(S,N),
counter(T,List,Counts0,Counts).
counter(List,Counts):-
list_to_set(List,Set),
counter(Set,List,[],Counts).
It's rather verbose, so I wondered if there was a builtin predicate or a more terse implementation.
There is no builtin predicate, here is another way to do that :
counter([X], [X/1]).
counter([H | T], R) :-
counter(T, R1),
( select(H/V, R1, R2)
-> V1 is V+1,
R = [H/V1 | R2]
; R = [H/1 | R1]).
I like #joel76's solution. I will add a few more variations on the theme.
VARIATION I
Here's another simple approach, which sorts the list first:
counter(L, C) :-
msort(L, S), % Use 'msort' instead of 'sort' to preserve dups
counter(S, 1, C).
counter([X], A, [X-A]).
counter([X,X|T], A, C) :-
A1 is A + 1,
counter([X|T], A1, C).
counter([X,Y|T], A, [X-A|C]) :-
X \= Y,
counter([Y|T], 1, C).
Quick trial:
| ?- counter([a,b,b,c], S).
S = [a-1,b-2,c-1] ?
yes
This will fail on counter([], C). but you can simply include the clause counter([], []). if you want it to succeed. It doesn't maintain the initial order of appearance of the elements (it's unclear whether this is a requirement). This implementation is fairly efficient and is tail recursive, and it will work as long as the first argument is instantiated.
VARIATION II
This version will maintain order of appearance of elements, and it succeeds on counter([], []).. It's also tail recursive:
counter(L, C) :-
length(L, N),
counter(L, N, C).
counter([H|T], L, [H-C|CT]) :-
delete(T, H, T1), % Remove all the H's
length(T1, L1), % Length of list without the H's
C is L - L1, % Count is the difference in lengths
counter(T1, L1, CT). % Recursively do the sublist
counter([], _, []).
With some results:
| ?- counter([a,b,a,a,b,c], L).
L = [a-3,b-2,c-1]
yes
| ?- counter([], L).
L = []
yes
VARIATION III
This one uses a helper which isn't tail recursive, but it preserves the original order of elements, is fairly concise, and I think more efficient.
counter([X|T], [X-C|CT]) :-
remove_and_count(X, [X|T], C, L), % Remove and count X from the list
counter(L, CT). % Count remaining elements
counter([], []).
% Remove all (C) instances of X from L leaving R
remove_and_count(X, L, C, R) :-
select(X, L, L1), !, % Cut to prevent backtrack to other clause
remove_and_count(X, L1, C1, R),
C is C1 + 1.
remove_and_count(_, L, 0, L).
This implementation will work as long as the first argument to counter is instantiated.
SIDEBAR
In the above predicates, I used the Element-Count pattern rather than Element/Count since some Prolog interpreters, SWI in particular, offer a number of predicates that know how to operate on associative lists of Key-Value pairs (see SWI library(pairs) and ISO predicate keysort/2).
I also like #joel76 solution (and #mbratch suggestions, also). Here I'm just to note that library(aggregate), if available, has a count aggregate operation, that can be used with the ISO builtin setof/3:
counter(L, Cs) :-
setof(K-N, (member(K, L), aggregate(count, member(K, L), N)), Cs).
yields
?- counter([a,b,b,c], L).
L = [a-1, b-2, c-1].
If the selection operation was more complex, a nice way to avoid textually repeating the code could be
counter(L, Cs) :-
P = member(K, L),
setof(K-N, (P, aggregate(count, P, N)), Cs).
edit
Since I'm assuming library(aggregate) available, could be better to task it the set construction also:
counter(L, Cs) :-
P = member(E,L), aggregate(set(E-C), (P, aggregate(count,P,C)), Cs).

Graph path define issue

The solution
ppath(X,Y,M,Path,[Y|Path]) :- edge(X,Y,M),\+ memberchk(Y,Path).
path(X,Y,P,SoFar,Path) :- edge(X,W,M), \+ memberchk(W,SoFar),
path(W,Y,N,[W|SoFar],Path), P is M+N.
pravilo(X,Y,Z) :-
aggregate(min(W), P^path(X,Y,W,[],P),Z).
Here is the code i have. The question is that starting point is a, and ending point is z.
There is an error after execution, the result is displayed like [z, c, h, b]. But the correct answer should [a,b,c,z].
Please help to fix my problem.
library(aggregate) allows for a witness on min/max scalar operations. We can use that feature to report back the path as well as the travel length:
path(X,Y,M,Path,FullPath) :-
edge(X,Y,M), \+ memberchk(Y,Path),
reverse([Y|Path], FullPath).
path(X,Y,P,SoFar,Path) :-
edge(X,W,M), \+ memberchk(W,SoFar),
path(W,Y,N,[W|SoFar],Path), P is M+N.
pravilo(X,Y,Z,Path) :-
aggregate(min(W,P), P^path(X,Y,W,[X],P), min(Z,Path)).
Note there is a typo in edge/3: edge(b,e,16 should be edge(b,e,16)..
Once corrected the DB, I get
pravilo(a,z,M,P).
M = 16,
P = [a, b, h, c, z].

Resources