(SWI)Prolog: Order of sub-goals - prolog

I have two, slightly different, implementations of a predicate, unique_element/2, in Prolog. The predicate succeeds when given an element X and a list L, the element X appears only once in the list. Below are the implementations and the results:
Implementation 1:
%%% unique_element/2
unique_element(Elem, [Elem|T]) :-
not(member(Elem, T)).
unique_element(Elem, [H|T]) :-
member(Elem, T),
H\==Elem,
unique_element(Elem, T),
!.
Results:
?- unique_element(X, [a, a, b, c, c, b]).
false.
?- unique_element(X, [a, b, c, c, b, d]).
X = a ;
X = d.
Implementation 2:
%%% unique_element/2
unique_element(Elem, [Elem|T]) :-
not(member(Elem, T)).
unique_element(Elem, [H|T]) :-
H\==Elem,
member(Elem, T),
unique_element(Elem, T),
!.
In case you didn't notice at first sight: H\==Elem and member(Elem, T) are flipped on the 2nd impl, rule 2.
Results:
?- unique_element(X, [a, a, b, c, c, b]).
X = a.
?- unique_element(X, [a, b, c, c, b, d]).
X = a ;
X = d.
Question: How does the order, in this case, affect the result? I realize that the order of the rules/facts/etc matters. The two specific rules that are flipped though, don't seem to be "connected" or affect each other somehow (e.g. a cut in the wrong place/order).
Note: We are talking about SWI-Prolog here.
Note 2: I am aware of, probably different and better implementations. My question here is about the order of sub-goals being changed.

H\==Elem is testing for syntactic inequality at the point in time when the goal is executed. But later unification might make variables identical:
?- H\==Elem, H = Elem.
H = Elem.
?- H\==Elem, H = Elem, H\==Elem.
false.
So here we test if they are (syntactically) different, and then they are unified nevertheless and thus are no longer different. It is thus just a temporary test.
The goal member(Elem, T) on the other hand is true if that Elem is actually an element of T. Consider:
?- member(Elem, [X]).
Elem = X.
Which can be read as
(When) does it hold that Elem is an element of the list [X]?
and the answer is
It holds under certain circumstances, namely when Elem = X.
If you now mix those different kinds of goals in your programs you get odd results that can only explained by inspecting your program in detail.
As a beginner, it is best to stick to the pure parts of Prolog only. In your case:
use dif/2 in place of \==
do not use cuts - in your case it limits the number of answers to two. As in
unique_element(X, [a,b,c])
do not use not/1 nor (\+)/1. It produces even more incorrectness. Consider unique_element(a,[a,X]),X=b. which incorrectly fails while X=b,unique_element(a,[a,X]) correctly succeeds.
Here is a directly purified version of your program. There is still room for improvement!
non_member(_X, []).
non_member(X, [E|Es]) :-
dif(X, E),
non_member(X, Es).
unique_element(Elem, [Elem|T]) :-
non_member(Elem, T).
unique_element(Elem, [H|T]) :-
dif(H,Elem),
% member(Elem, T), % makes unique_element(a,[b,a,a|Xs]) loop
unique_element(Elem, T).
?- unique_element(a,[a,X]).
dif(X, a)
; false. % superfluous
?- unique_element(X,[E1,E2,E3]).
X = E1, dif(E1, E3), dif(E1, E2)
; X = E2, dif(E2, E3), dif(E1, E2)
; X = E3, dif(E2, E3), dif(E1, E3)
; false.
Note how the last query reads?
When is X a unique element of (any) list [E1,E2,E3]?
The answer is threefold. Considering one element after the other:
X is E1 but only if it is different to E2 and E3
etc.

TL;DR: Read the documentation and figure out why:
?- X = a, X \== a.
false.
?- X \== a, X = a.
X = a.
I wonder why you stop so close from figuring it out yourself ;-)
There are too many ways to compare things in Prolog. At the very least, you have unification, which sometimes can compare, and sometimes does more; than you have equvalence, and its negation, the one you are using. So what does it do:
?- a \== b. % two different ground terms
true.
?- a \== a. % the same ground term
false.
Now it gets interesting:
?- X \== a. % a free variable and a ground term
true.
?- X \== X. % the same free variable
false.
?- X \== Y. % two different free variables
true.
I would suggest that you do the following: figure out how member/2 does its thing (does it use unification? equivalence? something else?) then replace whatever member/2 is using in all the examples above and see if the results are any different.
And since you are trying to make sure that things are different, try out what dif/2 does. As in:
?- dif(a, b).
or
?- dif(X, X).
or
?- dif(X, a).
and so on.
See also this question and answers: I think the answers are relevant to your question.
Hope that helps.

Here is another possibility do define unique_element/2 using if_/3 and maplist/2:
:- use_module(library(apply)).
unique_element(Y,[X|Xs]) :-
if_(Y=X,maplist(dif(Y),Xs),unique_element(Y,Xs)).
In contrast to #user27815's very elegant solution (+s(0)) this version does not build on clpfd (used by tcount/3). The example queries given by the OP work as expected:
?- unique_element(a,[a, a, b, c, c, b]).
no
?- unique_element(X,[a, b, c, c, b, d]).
X = a ? ;
X = d ? ;
no
The example provided by #false now succeeds without leaving a superfluous choicepoint:
?- unique_element(a,[a,X]).
dif(a,X)
The other more general query yields the same results:
?- unique_element(X,[E1,E2,E3]).
E1 = X,
dif(X,E3),
dif(X,E2) ? ;
E2 = X,
dif(X,E3),
dif(X,E1) ? ;
E3 = X,
dif(X,E2),
dif(X,E1) ? ;
no

Can you not define unique_element like tcount Prolog - count repetitions in list
unique_element(X, List):- tcount(=(X),List,1).

Related

Is there a non-unifying alternative to member/2 in SWI-Prolog?

In prolog, the difference between A = B and A == B is that = tries to unify A with B, while == will only succeed if A and B are already unified.
member/2 does seem to perform unification.
Example session:
?- A = B.
A = B.
?- A == B.
false.
?- member(A, [B]).
A = B.
I have been looking but I can't find a non-unifying alternative to member/2, but not found anything. Is there something built in or do I have to invent my own thing? As I'm rather new to Prolog I don't trust myself with writing a performant version of this.
EDIT:
I came up with the following, though I don't know if the cut is correct. Without it, it seems to deliver two answers for that branch of the code (true, followed by false) though. I'd also still like to know if there is a standard library function for this.
member_eq(_, []) :-
false.
member_eq(X, [H|_]) :-
X == H,
!.
member_eq(X, [_|T]) :-
member_eq(X, T).
You may slightly modify builtin predicate member/2 to use ==/2 instead of unification:
member_not_bind(X, [H|T]) :-
member_not_bind_(T, X, H).
member_not_bind_(_, X, Y):- X==Y.
member_not_bind_([H|T], X, _) :-
member_not_bind_(T, X, H).
Sample run:
?- L=[a,b,c(E)], member_not_bind(A, L).
false.
?- A=c(E),L=[a,b,c(E)], member_not_bind(A, L).
A = c(E),
L = [a, b, c(E)].
I leave this here as it solves a related question (checking if X may unify with any item in L without actually performing the bindings)
You can use double negation like this:
member_not_bind(X, L):- \+(\+(member(X, L))).
Sample runs:
?- A=c(e),L=[a,b,c(E)], member_not_bind(A, L).
A = c(e),
L = [a, b, c(E)].
?- A=d(E),L=[a,b,c(E)], member_not_bind(A, L).
false.

What is the difference in execution if the cut '!' is present?

counter([],[]).
counter([H|T],[[H,C1]|R]) :- counter(T,[[H,C]|R]),!, C1 is C+1.
counter([H|T],[[H,1]|R]) :- counter(T,R).
What is the effect of the "!" as I'm getting the same output for an input in both the above and below code?
counter([],[]).
counter([H|T],[[H,C1]|R]) :- counter(T,[[H,C]|R]),C1 is C+1.
counter([H|T],[[H,1]|R]) :- counter(T,R).
I'm new to Prolog.
What is the effect of the "!"
The cut prunes the search space. That is, in an otherwise pure and monotonic program, the cut will remove some solutions or answers. As long as those are redundant that's fine. It sounds so innocent and useful, doesn't it? Let's have a look!
And lest I forget, using [E,Nr] to denote pairs is rather unusual, better use a pair E-Nr.
We will now compare counter_cut/2 and counter_sans/2.
| ?- counter_cut([a,a],Xs).
Xs = [[a,2]].
| ?- counter_sans([a,a],Xs).
Xs = [[a, 2]]
; Xs = [[a, 1], [a, 1]]. % <<< surprise !!!
So the cut-version has fewer solutions. Seems the solution counter_cut/2 retained is the right one. In this very particular case. Will it always take the right one? I will try a minimally more general query:
| ?- counter_cut([a,B],Xs).
B = a,
Xs = [[a, 2]].
| ?- counter_sans([a,B],Xs).
B = a,
Xs = [[a, 2]]
; Xs = [[a, 1], [B, 1]].
Again, _sans is chattier, and this time, it is even a bit right-er; for the last answer includes B = b. In other words,
| ?- counter_cut([a,B], Xs), B = b.
fails. % incomplete !
| ?- counter_sans([a,B], Xs), B = b.
B = b,
Xs = [[a,1],[b,1]].
So sometimes the _cut version is better, and sometimes _sans. Or to put more directly: Both are wrong somehow, but the _sans-version at least includes all solutions.
Here is a "purified" version, that simply rewrites the last rule into two different cases: One for the end of the list and the other for a further, different element.
counter_pure([],[]).
counter_pure([H|T],[[H,C1]|R]) :- counter_pure(T,[[H,C]|R]), C1 is C+1.
counter_pure([H],[[H,1]]).
counter_pure([H,D|T],[[H,1]|R]) :- dif(H,D), counter_pure([D|T],R).
From an efficiency viewpoint that is not too famous.
Here is a test case for efficiency for a system with rational tree unification:
?- Es = [e|Es], counter(Es, Dict).
resource_error(stack).
Instead, the implementation should loop smoothly, at least till the end of this universe. Strictly speaking, that query has to produce a resource error, but only after it has counted up to a number much larger than 10^100000000.
Here's my pure and hopefully efficient solution:
counter([X|L], C):- counter(L, X, 1, C).
counter([],X, Cnt, [[X,Cnt]]).
counter([Y|L], X, Cnt, [[X,Cnt]|C]):-
dif(X, Y),
counter(L, Y, 1, C).
counter([X|L],X, Cnt, [[X,XCnt]|C]):-
Cnt1 #= Cnt+1,
Cnt1 #=< XCnt,
counter(L, X, Cnt1, [[X,XCnt]|C]).
Using if_3 as suggested by #false:
counter([X|L], C):- counter(L, X, 1, C).
counter([],X, Cnt, [[X,Cnt]]).
counter([Y|L], X, Cnt, [[X,XCnt]|C]):-
if_(X=Y,
(
Cnt1 #= Cnt+1,
Cnt1 #=< XCnt,
counter(L, X, Cnt1, [[X,XCnt]|C])
),
(
XCnt=Cnt,
counter(L, Y, 1, C)
)
).
The cut operator ! commits to the current derivation path by pruning all choice points. Given some facts
fact(a).
fact(b).
you can compare the answers with and without cut:
?- fact(X).
X = a ;
X = b.
?- fact(X), !.
X = a.
As you can see, the general query now only reports its first success. Still, the query
?- fact(b), !.
true.
succeeds. This means, that cut violates the interpretation of , as logical conjunction:
?- X = b, fact(X), !.
X = b.
?- fact(X), !, X=b.
false.
but from our understanding of conjunction, A ∧ B should hold exactly when B ∧ A holds. So why do this at all?
Efficiency: cuts can be used such that they only change execution properties but not the answers of a predicate. These so called green cuts are for instance described in Richard O'Keefe's Craft of Prolog. As demonstrated above, maintaining correctness of a predicate with cut is much harder than one without, but obviously, correctness should come before efficiency.
It looks as if your problem was green, but I am not 100% sure if there is not a change in the answers.
Negation: logical negation according to the closed world assumption is expressed with cut. You can define neg(X) as:
neg(X) :-
call(X),
!,
false.
neg(_) :-
true.
So if call(X) succeeds, we cut the choice point for the second rule away and derive false. Otherwise, nothing is cut and we derive true. Please be aware that this is not negation in classical logic and that it suffers from the non-logical effects of cut. Suppose you define the predicate land/1 to be one of the continents:
land(africa).
land(america).
land(antarctica).
land(asia).
land(australia).
land(europe).
and then define water as everything not on land:
water(X) :-
neg(land(X)).
then you can correctly obtain:
?- water(pacific).
true.
?- water(africa).
false.
But you can also derive:
?- water(space).
true.
which should not hold. In particular, in classical logic:
land(africa) ∧
land(america) ∧
land(antarctica) ∧
land(asia) ∧
land(australia) ∧
land(europe) → ¬ land(space).
is not valid. Again, you should know well what you are doing if you use negation in Prolog.
Here is my attempt using if_/3:
counter([], []).
counter([H|T], [[H,C]|OutT] ):-
if_(
T=[],
(C = 1,OutT=[]),
(
[H|T] = [H,H1|T2],
if_(
H=H1,
(counter([H1|T2], [[H1,C1]|OutT]), C is C1+1),
(C = 1, counter([H1|T2], OutT))
)
)
).

Prolog: lexicographic comparison and split a list

Given atom x, I am trying to split a list into one with atoms smaller than x and one with atoms equal to or greater than x.
For example)
%% split(d,[a,b,c,d,e,f],AtomSmall, AtomBig) should give me
%% AtomSmall = [a,b,c], AtomBig = [d,e,f]
Below is what I've tried so far. I get the concept.However my code includes the atom that is equivalent to x in AtomSmall list, not AtomBig, although I check the case with before predicate.
For example)
%% split(d,[a,b,c,d,e,f],AtomSmall, AtomBig) gives me
%% AtomSmall = [a,b,c,d], AtomBig = [e,f]
before(X,Y):-atom_codes(X,A),atom_codes(Y,B),small(A,B).
small([],[]).
small([H1|T1],[H2|T2]):-H1<H2.
small([H1|T1],[H2|T2]):-H1=:=H2,small(T1,T2).
split(X,[],[],[]).
split(X,[H1|T1],[H1|Small],Big):-before(H1,X),split(X,T1,Small,Big).
split(X,[H1|T1],Small,[H1|Big]):-not(before(H1,X)),split(X,T1,Small,Big).
Please help!
In SWI-Prolog, you can use partition/4 from library(lists) and the standard order comparison (#>)/2:
?- lists:partition(#>(d),[a,b,c,d,e,f],L,R).
L = [a, b, c],
R = [d, e, f].
Since the order of arguments in comparison is fixed passing the pivot in as first argument, a lambda expression (using library(yall), needs a recent version) can help to give a more intuitive reading:
?- partition([E]>>(E#<d),[a,b,c,d,e,f],L,R).
L = [a, b, c],
R = [d, e, f].
Anyway, your code could be patched like this:
split(_,[],[],[]).
split(X,[H1|T1],[H1|Small],Big):-H1#<X,split(X,T1,Small,Big).
split(X,[H1|T1],Small,[H1|Big]):- \+ H1#<X,split(X,T1,Small,Big).
?- split(d,[a,b,c,d,e,f],L,R).
L = [a, b, c],
R = [d, e, f] ;
false.
Your before/2 predicate succeeds if the arguments are lexicographically equivalent. For example, before(a, a) is true. That's because your 3rd clause allows equal values throughout the list until the base case finally succeeds with two empty lists.
In addition, something you haven't encountered yet evidently, is that before(X, Y) will fail if X and Y are different length atoms. For example, before(ab, abc) will fail. So your small/2 needs to take care of that case as well.
A refactoring of small/2 will fix that:
% 1st clause is fixed so unequal length atoms are handled properly
small([], _).
small([H1|_], [H2|_]) :- H1 < H2.
% 3rd clause is fixed so that equal atoms won't succeed here
small([H,H1|T1], [H,H2|T2]) :- small([H1|T1], [H2|T2]).
But... you don't need to go through all that with before/2. Prolog knows how to compare, in a sensible way, atoms (and general Prolog terms) using the #< and #> operators, as #CapelliC indicated in his answer. So your before/2 just becomes:
before(X, Y) :- X #< Y.
And you don't need small/2 at all. That's basically the second solution that #CapelliC showed in his answer.

Why does prolog don't give all results, when I place the equality-comparision at the beginning?

Currently I'm exercising the Prolog chapter of seven languages in seven weeks. I tried to change the coloring example, in order to not write down every valid color combination.
different(red, green).
different(green, red).
different(red, blue).
different(blue, red).
different(blue, green).
different(green, blue).
coloring(A, M, G, T, F) :-
different(M, T),
different(M, A),
different(A, T),
different(A, M),
different(A, G),
different(A, F),
different(G, F),
different(G, T).
I changed the file to make different a functionpredicate:
color(red).
color(blue).
color(green).
different(X, Y) :- color(X), color(Y), \+(X=Y).
different_fail(X, Y) :- \+(X=Y), color(X), color(Y).
coloring(A, M, G, T, F) :-
different(M, T),
different(M, A),
different(A, T),
different(A, M),
different(A, G),
different(A, F),
different(G, F),
different(G, T).
What I don't get is that different gives me all combinations of different colors, but different_fail does only check if they are really different.
GNU Prolog 1.4.5 (32 bits)
Compiled Feb 23 2015, 08:36:31 with gcc
By Daniel Diaz
Copyright (C) 1999-2015 Daniel Diaz
| ?- ['color'].
compiling /home/rudi/7langs/prolog/color.pl for byte code...
/home/rudi/7langs/prolog/color.pl compiled, 17 lines read - 2206 bytes written, 7 ms
| ?- different(red, red).
no
| ?- different(red, blue).
yes
| ?- different_fail(red, red).
no
| ?- different_fail(red, blue).
Up to here everything works as expected.
yes
| ?- different(red, A).
A = blue ? ;
A = green
yes
| ?- different_fail(red, A).
no
But here I would expect that different_fail yields the exact results as different.
What is the difference in these functions, which cause my different_fail to fail?
To declaratively express that two terms be different, use the dif/2 constraint, which is available in SICStus Prolog, SWI-Prolog, YAP and several others.
If you write different_colors/2 like this:
different_colors(X, Y) :- dif(X,Y), color(X), color(Y).
then everything will work exactly as you expect it, no matter in which order you place the goals.
The reason it currently fails is that \+/1 only means not provable at this time. It is not true negation in the declarative sense. Therefore, we have:
?- \+ X = Y, X = a, Y = b.
false.
but if we simply exchange the goals by commutativity of conjunction:
?- X = a, Y = b, \+ X = Y.
X = a,
Y = b.
In contrast, dif/2 works correctly in both cases, and I highly recommend you use it instead:
?- dif(X, Y), X = a, Y = b.
X = a,
Y = b.
?- X = a, Y = b, dif(X, Y).
X = a,
Y = b.
The (=)/2 means unification, not equality, and a variable can unify with anything, by definition.
Then, when you pass an unbound variable to different_fail/2, its first goal will fail, since the unification is actually performed, and then immediately undone by the negation...
I don't agree fully with the answer by mat... I think that in Prolog you cannot avoid to understand the operational semantic...

Split a list in separate lists

I have to define some more constraints for my list.
I want to split my list is separate lists.
Example:
List=[[1,1],[_,0],[_,0],[_,0],[3,1],[_,0],[9,1],[2,0],[4,0]]
I need three Lists which i get from the main list:
[[_,0],[_,0],[_,0]] and [[_,0]] and [[2,0],[4,0]]
SO I always need a group of lists between a term with [X,1].
It would be great if u could give me a tip. Don’t want the solution, only a tip how to solve this.
Jörg
This implementation tries to preserve logical-purity without restricting the list items to be [_,_], like
#false's answer does.
I can see that imposing above restriction does make a lot of sense... still I would like to lift it---and attack the more general problem.
The following is based on if_/3, splitlistIf/3 and reified predicate, marker_truth/2.
marker_truth(M,T) reifies the "marker"-ness of M into the truth value T (true or false).
is_marker([_,1]). % non-reified
marker_truth([_,1],true). % reified: variant #1
marker_truth(Xs,false) :-
dif(Xs,[_,1]).
Easy enough! Let's try splitlistIf/3 and marker_truth/2 together in a query:
?- Ls=[[1,1],[_,0],[_,0],[_,0],[3,1],[_,0],[9,1],[2,0],[4,0]],
splitlistIf(marker_truth,Ls,Pss).
Ls = [[1,1],[_A,0],[_B,0],[_C,0],[3,1],[_D,0],[9,1],[2,0],[4,0]],
Pss = [ [[_A,0],[_B,0],[_C,0]], [[_D,0]], [[2,0],[4,0]]] ? ; % OK
Ls = [[1,1],[_A,0],[_B,0],[_C,0],[3,1],[_D,0],[9,1],[2,0],[4,0]],
Pss = [ [[_A,0],[_B,0],[_C,0]], [[_D,0],[9,1],[2,0],[4,0]]],
prolog:dif([9,1],[_E,1]) ? ; % BAD
%% query aborted (6 other BAD answers omitted)
D'oh!
The second answer shown above is certainly not what we wanted.
Clearly, splitlistIf/3 should have split Ls at that point,
as the goal is_marker([9,1]) succeeds. It didn't. Instead, we got an answer with a frozen dif/2 goal that will never be woken up, because it is waiting for the instantiation of the anonymous variable _E.
Guess who's to blame! The second clause of marker_truth/2:
marker_truth(Xs,false) :- dif(Xs,[_,1]). % BAD
What can we do about it? Use our own inequality predicate that doesn't freeze on a variable which will never be instantiated:
marker_truth(Xs,Truth) :- % variant #2
freeze(Xs, marker_truth__1(Xs,Truth)).
marker_truth__1(Xs,Truth) :-
( Xs = [_|Xs0]
-> freeze(Xs0, marker_truth__2(Xs0,Truth))
; Truth = false
).
marker_truth__2(Xs,Truth) :-
( Xs = [X|Xs0]
-> when((nonvar(X);nonvar(Xs0)), marker_truth__3(X,Xs0,Truth))
; Truth = false
).
marker_truth__3(X,Xs0,Truth) :- % X or Xs0 have become nonvar
( nonvar(X)
-> ( X == 1
-> freeze(Xs0,(Xs0 == [] -> Truth = true ; Truth = false))
; Truth = false
)
; Xs0 == []
-> freeze(X,(X == 1 -> Truth = true ; Truth = false))
; Truth = false
).
All this code, for expressing the safe logical negation of is_marker([_,1])? UGLY!
Let's see if it (at least) helped above query (the one which gave so many useless answers)!
?- Ls=[[1,1],[_,0],[_,0],[_,0],[3,1],[_,0],[9,1],[2,0],[4,0]],
splitlistIf(marker_truth,Ls,Pss).
Ls = [[1,1],[_A,0],[_B,0],[_C,0],[3,1],[_D,0],[9,1],[2,0],[4,0]],
Pss = [[ [_A,0],[_B,0],[_C,0]], [[_D,0]], [[2,0],[4,0]]] ? ;
no
It works! When considering the coding effort required, however, it is clear that either a code generation scheme or a
variant of dif/2 (which shows above behaviour) will have to be devised.
Edit 2015-05-25
Above implementation marker_truth/2 somewhat works, but leaves a lot to be desired. Consider:
?- marker_truth(M,Truth). % most general use
freeze(M, marker_truth__1(M, Truth)).
This answer is not what we would like to get. To see why not, let's look at the answers of a comparable use of integer_truth/2:
?- integer_truth(I,Truth). % most general use
Truth = true, freeze(I, integer(I)) ;
Truth = false, freeze(I, \+integer(I)).
Two answers in the most general case---that's how a reified predicate should behave like!
Let's recode marker_truth/2 accordingly:
marker_truth(Xs,Truth) :- subsumes_term([_,1],Xs), !, Truth = true.
marker_truth(Xs,Truth) :- Xs \= [_,1], !, Truth = false.
marker_truth([_,1],true).
marker_truth(Xs ,false) :- nonMarker__1(Xs).
nonMarker__1(T) :- var(T), !, freeze(T,nonMarker__1(T)).
nonMarker__1(T) :- T = [_|Arg], !, nonMarker__2(Arg).
nonMarker__1(_).
nonMarker__2(T) :- var(T), !, freeze(T,nonMarker__2(T)).
nonMarker__2(T) :- T = [_|_], !, dif(T,[1]).
nonMarker__2(_).
Let's re-run above query with the new implementation of marker_truth/2:
?- marker_truth(M,Truth). % most general use
Truth = true, M = [_A,1] ;
Truth = false, freeze(M, nonMarker__1(M)).
It is not clear what you mean by a "group of lists". In your example you start with [1,1] which fits your criterion of [_,1]. So shouldn't there be an empty list in the beginning? Or maybe you meant that it all starts with such a marker?
And what if there are further markers around?
First you need to define the criterion for a marker element. This for both cases: When it applies and when it does not apply and thus this is an element in between.
marker([_,1]).
nonmarker([_,C]) :-
dif(1, C).
Note that with these predicates we imply that every element has to be [_,_]. You did not state it, but it does make sense.
split(Xs, As, Bs, Cs) :-
phrase(three_seqs(As, Bs, Cs), Xs).
marker -->
[E],
{marker(E)}.
three_seqs(As, Bs, Cs) -->
marker,
all_seq(nonmarker, As),
marker,
all_seq(nonmarker, Bs),
marker,
all_seq(nonmarker, Cs).
For a definition of all_seq//2 see this
In place of marker, one could write all_seq(marker,[_])
You can use a predicate like append/3. For example, to split a list on the first occurence of the atom x in it, you would say:
?- L = [a,b,c,d,x,e,f,g,x,h,i,j], once(append(Before, [x|After], L)).
L = [a, b, c, d, x, e, f, g, x|...],
Before = [a, b, c, d],
After = [e, f, g, x, h, i, j].
As #false has pointed out, putting an extra requirement might change your result, but this is what is nice about using append/3:
"Split the list on x so that the second part starts with h:
?- L = [a,b,c,d,x,e,f,g,x,h,i,j], After = [h|_], append(Before, [x|After], L).
L = [a, b, c, d, x, e, f, g, x|...],
After = [h, i, j],
Before = [a, b, c, d, x, e, f, g].
This is just the tip.

Resources