Finding an optimal schedule - algorithm

I'm reading through an algorithm textbook and I've come across yet another problem that I'm stuck on. I'm looking for some help solving it and if anyone could provide some similar, already-existing, problems that I could reference to follow similar steps, that'd be great.
This is the problem:

Begin by trying to transform some (optimal/feasible) schedule into one (also optimal/feasible) that satisfies the criteria (a). In you starting schedule there will always be at least two jobs with their deadlines in the opposite order, i.e. the later job has the earliest deadline. Think what happens if you exchange the places of these two jobs in the schedule.

Related

Need an advice about algorithm to solve quite specific Job Shop Scheduling Problem

Job Shop Scheduling Problem (JSSP): I have jobs that consist of tasks and I have machines that can perform these tasks.
I should be able to add new jobs dynamically. E.g. I have a schedule for the first 5 jobs, and when the 6th arrive - I need to be able to fit it into the schedule in the best way. It is possible to adjust existing schedule within the given flexibility constrains.
Look at the picture below.
Jobs have tasks, each task is the same type of action. Think about painting of some objects with paint spray. All the machines are the same (paint sprays), and all of the tasks are the same.
Constraint 1. Jobs have a preferred deadline for completion, but the deadline is flexible to some extent.
Edit after #tucuxi answer: Flexible deadline mean that the time of completion can be extended by some delta if necessary.
Constraint 2. Between the jobs there is resting phase. Think about drying the paint. Resting phase has minimal required duration. Resting phase can be longer or shorter if necessary.
Edit after #tucuxi answer: So there is planned time of rest Tp which is desired, but flexible value that can be increased or decreased if this allows for better scheduling. And there is minimal time of rest Tm. So Tp-Tadjustmenet>=Tm.
The machine is occupied by the job from the start to the completion.
Here goes parts that make this problem very distinct from what I have read about.
Jobs arrive in batches of several jobs. For example a batch can contain 10 jobs of the type Job_1 and 5 of Job_2. Different batches can contain different types of jobs. All the jobs from the batches should be finished as close to each other as possible. Not necessary at the same time, but we need to minimize the delay between the completion of first and last jobs from the batch.
Constraint 3. Machines are grouped. In each group only M machines can work simultaneously. Think about paint sprays that are connected to the common pressurizer that has limited performance.
The goal.
Having given description of the problem, it should be possible to solve JSSP. It should be also possible to add new jobs to the existing schedule.
Edit after #tucuxi answer: This is not a task that should be solved immediately: it is not a time-critical system. But it shouldn't be too long to irritate a human who put new tasks into the algorithm.
Question
What kind of many JSSP algorithms can help me solve this? I can implement an algorithm by myself, if there is one. The closest I found is This - Resource Constrained Project Scheduling Problem. But I was not able to comprehend how can I glue it to the JSSP solving algorithm.
Edit after #tucuxianswer: No, I haven't tried it yet.
Is there any libraries that can be used to solve this problem? Python or C# are the preferred languages, but in the end it doesn't really matter.
I appreciate any help: keyword to search for, link, reference to a book, reference to a library.
Thank you.
I doubt that there is a pre-made algorithm that solves your exact problem.
If I had to solve it, I would first:
compile datasets of inputs that I can feed into candidate solvers.
think of a metric to rank outputs, so that I can compare the candidates to see which is better.
A baseline solver could be a brute-force search: test and rate all possible job schedulings for small sample problems. This is of course infeasible for large inputs, but for small inputs it allows you to compare the outputs of more efficient solvers to a known-best answer.
Your link is to localsolver.com, which appears to provide a library for specifying problem constraints to then solve them. It is not freely available, requiring a license to use; but it would seem that your problem can be readily modeled in it. Have you tried to do so? They appear to support both C++ and Python. Other free options exist, including optaplanner (2.8k stars in github) or python-constraint (I have not looked into other languages).
Note that a good metric is crucial to choosing a good algorithm: unless you have a clear cost function to minimize, choosing "a good algorithm" is impossible. In your description of the problem, I see several places where cost is unclear (marked in italics):
job deadlines are flexible
minimal required rest times... which may be shortened
jobs from a batch should be finished as close together as possible
(not from specification): how long can you wait for an optimal vs a less-optimal-but-faster solution?

Get All Permutations of Non-Conflicting Event Schedules

I am attempting to create a set of class schedules from a list of available classes and I want to be able to find the set of all possible (and valid) schedules that could be made from the list of available courses.
I am aware of the Activity Selection Problem/Event Scheduling Problem seen here and here but I do not know how to modify these algorithms to give me a complete set of schedules rather than just *a* complete schedule.
More succintly, how can the activity selection problem be modified to give a set of all possible non-conflicting event schedules?
I should also note that I believe that a solution to this would probably be in O(n^n) time, so if anyone has a suggestion for a solution to a complete scheduling problem that has a lower asymptotic running time, please share thoughts.
I am aware of the fact that this approach is a variant of recursive backtracking with some modification, but I can't seem to find anything in literature about it.
I would try ordering all of your activities based on start time. Take the first one, and suppose that it's in the schedule. Then proceed through the list and construct a schedule from the remaining classes that start after the first one ends. Once you've constructed all of these, repeat, but exclude the first class from your schedule. Your algorithm will just be recursively seeing what schedules result from the inclusion or exclusion of a class. Your runtime will be O(2^n) though (I don't think you can do it in O(n*2), but I could be wrong). I assume the specialized algorithms (for finding the best possible schedule) exist because the runtime for finding all possible schedules is so bad.

Scheduling with variable Resources

(First of all, sorry for my english, it's not my first language)
I have a list of tasks/jobs, each task must start after a specific start time, needs to run for a certain time and has to be finished after a certain end time.
I can dynamically add and remove workers, so it is possible to execute 2 or more tasks at the same time if I have to. My Goal is to find a scheduling plan that executes each job successfully and uses the minimal amount of workers possible.
I'm currently using an EDF (http://en.wikipedia.org/wiki/Earliest_deadline_first_scheduling) Algorithm and recursively call the function with a higher Worker Limit if it can't schedule all jobs correctly, but I think this doesn't work right because I don't have a real way to measure when I can lower the ressource limit again.
Are there any Algorithms that work for my problem, or any other clever ideas?
Thanks for your help.
A scheduling problem can often be solved very effectively by formulating it either as mixed-integer program (MIP)
http://en.wikipedia.org/wiki/Mixed_integer_programming#Integer_unknowns
or expressing it using constraint programming (CP)
http://en.wikipedia.org/wiki/Constraint_programming
For either MIP or CP, you will find both free and commercial solvers that can address your problem.
In both of these approaches, you put your effort into stating the properties that the solution must have, and the hard work of applying an appropriate algorithm is left to a specialized solver.

Resource scheduling problem

I'm developing a motorcycle hire website. The problem I have is how to solve the problem of assignment a guest to a motorcycle in an efficient way. I know how to do it in a "silly" way, but I want to know if there is a classical algorithm that solves this kind of problem. It's the same problem as the assignment of a guest to rooms in a hotel. In this last example, the goal is to achive maximum occupancy by never rejecting a reservation due to inefficient scheduling.
I'm pretty sure that this problem has to be a classic problem that has a known solution.
Thanks a lot.
What you're interested in is called Interval Scheduling. Assuming all reservations have the same weight (none are favored over any other), you'd want a greedy algorithm.
Here (pdf) are some good slides about the topic.
Basically, you want to schedule the earliest-ending reservations first.
This is Interval scheduling but it's an online algorithm. If you want to read further you can read here:
http://www-bcf.usc.edu/~dkempe/teaching/online.pdf

Algorithm for a planning tool

I'm writing a small software application that needs to serve as a simple planning tool for a local school. The 'problem' it needs to solve is fairly basic. Namely, the teachers need to talk with the parents of all children. However, some children have, of course, brothers and sisters in different groups, so these talks need to be scheduled next to eachother, to avoid the situations were parents have a talk at 6 pm and another one at 10 pm. Thus in short, given a collection of n children, where some children have 1 or more brothers or sisters, generate a schedule where all the talks of these children are planned next to each other.
Now, maybe the problem can be solved extremely easy, but on the other I have a feeling this can be a pretty complicated problem, that needs and can be solved with some sort of algorithm. Elegantly. But am I right? Is there? I've looked at the Hungarian alorithm but it doesn't quite apply to this particular problem.
Edit: I forgot to mention, that all talks take the same amount of time.
Thanks!
I think it is quite easy.
First group the kids which belong together because they share parents. Schedule the children inside a group consecutively, schedule the rest as random.
Another way to abstract it and make the problem easier is to look from the parent perspective, see brothers and sister as "child" and give them more time. Then you can just schedule the parents at random, but some need more time (because they have multiple childeren).
One approach woul dbe to define the problem in a declarative constraint language and then let it solve the problem for you. The last time I did this, I used ECLiPSe, which is a nifty little language where you define your problem space by constraints, and then let it find allowable values that satisfy those constraints.
For example, I believe you have two classes of constraints:
A teacher may only have one
conference at a time
All students in the same family must
have consecutive slots
Once you define these in ECLiPSe, it will calculate values for each student that satisfy the requirements. If you go this way, you can also easily add constraints as you need to. For example, it's easy to say that a teach is unavailable for slot Y, or teachers must take turns doing administrative work, etc.
This sorts feels like a "backpack algorithm" type of problem. You need to group the family members together then fill slots appropriately.
If you google "backpack algorithm", you'll see enough write-ups to make your head spin and also some good coded solutions.
I think if each talk could be reduced to "activities" where each activity has a start time and an end time you could use the activity-selection algorithm studied in computer science. It is based on a greedy approach and could be solved in O(n) (where n is the number of activities). You could find more information here. I am sure you will need to have to do a pre-processing here to be able to reduce the brother/sister issue as activities of the same type.

Resources