I am trying to check for even/odd players and even/odd columns in a game by counting the players and the columns. At some point, it seems I am not instantiating my variables correctly.
Here is how I call the game:
playGame(Game):-
countPlayers(Game,TotalPlayers),
colSize(Game,TotalCols),
checkEvens(TotalPlayers,TotalCols);
checkOdds(TotalPlayers,TotalCols).
I assume the issues lies with TotalPlayers and TotalCols not being assigned correctly.
I tried looking at other questions, however the problems seem to be different. I am new to prolog and likely making a trivial mistake somewhere.
After some tracing, it seems the error is being caused when a combination of odd/even is the input. Given an input of two even or two odd numbers, the program behaves as expected. Given an input of one odd and one even number, and it breaks.
Full error:
ERROR: Arguments are not sufficiently instantiated
ERROR: In:
ERROR: [11] 1 is _34862 mod 2
ERROR: [10] checkOdds(_34894,_34896)
?- X = 3, between(1, X, 2), between(1, X, 3).
X = 3.
?- X = 3, between(1, X, 2); between(1, X, 3).
X = 3 ;
ERROR: Arguments are not sufficiently instantiated
ERROR: In:
ERROR: [9] between(1,_7656,3)
ERROR: [7] <user>
ERROR:
ERROR: Note: some frames are missing due to last-call optimization.
ERROR: Re-run your program in debug mode (:- debug.) to get more detail.
Can you spot what is going on?
A predicate like this:
foo :- a, b; c.
is the same thing as:
foo :- a, b.
foo :- c.
In other words, a, b is indeed in a different "context" than c.
Often, you mean to say a, (b ; c) instead. This is why the ; is usually put at the beginning of the line, and you do use parens around it. So it would be either
( a,
b
; c
)
or
a,
( b
; c
)
(which is not the same thing!)
This is definitely confusing:
a,
b;
c
You don't see "good" Prolog code written like this (say library code).
But really, try to read a textbook or something, Stackoverflow is good for figuring out where your error is but not for really learning.
I'm having a bit of trouble with something. I've wrote a function that returns the number of occurrences of an element in a list. Here is the code:
occurencesHelp(X,[],N,N).
occurencesHelp(X,[X|T],N,Y) :-
N1 is N+1,
occurencesHelp(X,T,N1,Y).
occurencesHelp(X,[H|T],N,Y) :-
occurencesHelp(X,T,N,Y).
occurences(X,List,N) :-
occurencesHelp(X,List,0,N).
This works fine, the first answer I get is:
N = 5 ?
but then there are multiple answers such as:
N = 4 ? ;
N = 4 ? ;
N = 3 ? ;
N = 4 ? ;
N = 3 ? ;
and so on. I've tried tracing through to see if I can see why this is the case but can't figure it out. I think using a cut would help me, but we have been specifically told not to use cut, so that isn't an option. Any help would be appreciated.
Thanks.
When I load your code in SWI-Prolog, I get the following warnings:
Warning: /home/isabelle/occ.pl:1:
Singleton variables: [X]
Warning: /home/isabelle/occ.pl:7:
Singleton variables: [H]
These warnings are important. Singleton variables are very often a sign that you have made a serious logical error. In your case, let's look at line 7. It's in this clause:
occurencesHelp(X,[H|T],N,Y) :-
occurencesHelp(X,T,N,Y).
Prolog tells us that H is a singleton variable. This means that it only occurs once in this clause, and this means that we forgot to put H in a relation with the other variables.
The previous clause says (procedurally): "if the head of the list is X, increment the counter". Conversely, this clause should say: "if the head of the list is not X, keep the counter unchanged". But it does not say that about the head of the list: In fact, it doesn't say anything about H (hence the warning).
So what you need to add is a goal expressing the fact that X and H should be unequal. Two ways to express this are X \= H and dif(X, H). In your case, the choice depends on what you have already learned in your course.
(The singleton warning for line 1 is benign in this case; you can just replace X by _X to tell Prolog that you explicitly want to ignore that variable.)
This is a question provoked by an already deleted answer to this question. The issue could be summarized as follows:
Is it possible to fold over a list, with the tail of the list generated while folding?
Here is what I mean. Say I want to calculate the factorial (this is a silly example but it is just for demonstration), and decide to do it like this:
fac_a(N, F) :-
must_be(nonneg, N),
( N =< 1
-> F = 1
; numlist(2, N, [H|T]),
foldl(multiplication, T, H, F)
).
multiplication(X, Y, Z) :-
Z is Y * X.
Here, I need to generate the list that I give to foldl. However, I could do the same in constant memory (without generating the list and without using foldl):
fac_b(N, F) :-
must_be(nonneg, N),
( N =< 1
-> F = 1
; fac_b_1(2, N, 2, F)
).
fac_b_1(X, N, Acc, F) :-
( X < N
-> succ(X, X1),
Acc1 is X1 * Acc,
fac_b_1(X1, N, Acc1, F)
; Acc = F
).
The point here is that unlike the solution that uses foldl, this uses constant memory: no need for generating a list with all values!
Calculating a factorial is not the best example, but it is easier to follow for the stupidity that comes next.
Let's say that I am really afraid of loops (and recursion), and insist on calculating the factorial using a fold. I still would need a list, though. So here is what I might try:
fac_c(N, F) :-
must_be(nonneg, N),
( N =< 1
-> F = 1
; foldl(fac_foldl(N), [2|Back], 2-Back, F-[])
).
fac_foldl(N, X, Acc-Back, F-Rest) :-
( X < N
-> succ(X, X1),
F is Acc * X1,
Back = [X1|Rest]
; Acc = F,
Back = []
).
To my surprise, this works as intended. I can "seed" the fold with an initial value at the head of a partial list, and keep on adding the next element as I consume the current head. The definition of fac_foldl/4 is almost identical to the definition of fac_b_1/4 above: the only difference is that the state is maintained differently. My assumption here is that this should use constant memory: is that assumption wrong?
I know this is silly, but it could however be useful for folding over a list that cannot be known when the fold starts. In the original question we had to find a connected region, given a list of x-y coordinates. It is not enough to fold over the list of x-y coordinates once (you can however do it in two passes; note that there is at least one better way to do it, referenced in the same Wikipedia article, but this also uses multiple passes; altogether, the multiple-pass algorithms assume constant-time access to neighboring pixels!).
My own solution to the original "regions" question looks something like this:
set_region_rest([A|As], Region, Rest) :-
sort([A|As], [B|Bs]),
open_set_closed_rest([B], Bs, Region0, Rest),
sort(Region0, Region).
open_set_closed_rest([], Rest, [], Rest).
open_set_closed_rest([X-Y|As], Set, [X-Y|Closed0], Rest) :-
X0 is X-1, X1 is X + 1,
Y0 is Y-1, Y1 is Y + 1,
ord_intersection([X0-Y,X-Y0,X-Y1,X1-Y], Set, New, Set0),
append(New, As, Open),
open_set_closed_rest(Open, Set0, Closed0, Rest).
Using the same "technique" as above, we can twist this into a fold:
set_region_rest_foldl([A|As], Region, Rest) :-
sort([A|As], [B|Bs]),
foldl(region_foldl, [B|Back],
closed_rest(Region0, Bs)-Back,
closed_rest([], Rest)-[]),
!,
sort(Region0, Region).
region_foldl(X-Y,
closed_rest([X-Y|Closed0], Set)-Back,
closed_rest(Closed0, Set0)-Back0) :-
X0 is X-1, X1 is X + 1,
Y0 is Y-1, Y1 is Y + 1,
ord_intersection([X0-Y,X-Y0,X-Y1,X1-Y], Set, New, Set0),
append(New, Back0, Back).
This also "works". The fold leaves behind a choice point, because I haven't articulated the end condition as in fac_foldl/4 above, so I need a cut right after it (ugly).
The Questions
Is there a clean way of closing the list and removing the cut? In the factorial example, we know when to stop because we have additional information; however, in the second example, how do we notice that the back of the list should be the empty list?
Is there a hidden problem I am missing?
This looks like its somehow similar to the Implicit State with DCGs, but I have to admit I never quite got how that works; are these connected?
You are touching on several extremely interesting aspects of Prolog, each well worth several separate questions on its own. I will provide a high-level answer to your actual questions, and hope that you post follow-up questions on the points that are most interesting to you.
First, I will trim down the fragment to its essence:
essence(N) :-
foldl(essence_(N), [2|Back], Back, _).
essence_(N, X0, Back, Rest) :-
( X0 #< N ->
X1 #= X0 + 1,
Back = [X1|Rest]
; Back = []
).
Note that this prevents the creation of extremely large integers, so that we can really study the memory behaviour of this pattern.
To your first question: Yes, this runs in O(1) space (assuming constant space for arising integers).
Why? Because although you continuously create lists in Back = [X1|Rest], these lists can all be readily garbage collected because you are not referencing them anywhere.
To test memory aspects of your program, consider for example the following query, and limit the global stack of your Prolog system so that you can quickly detect growing memory by running out of (global) stack:
?- length(_, E),
N #= 2^E,
portray_clause(N),
essence(N),
false.
This yields:
1.
2.
...
8388608.
16777216.
etc.
It would be completely different if you referenced the list somewhere. For example:
essence(N) :-
foldl(essence_(N), [2|Back], Back, _),
Back = [].
With this very small change, the above query yields:
?- length(_, E),
N #= 2^E,
portray_clause(N),
essence(N),
false.
1.
2.
...
1048576.
ERROR: Out of global stack
Thus, whether a term is referenced somewhere can significantly influence the memory requirements of your program. This sounds quite frightening, but really is hardly an issue in practice: You either need the term, in which case you need to represent it in memory anyway, or you don't need the term, in which case it is simply no longer referenced in your program and becomes amenable to garbage collection. In fact, the amazing thing is rather that GC works so well in Prolog also for quite complex programs that not much needs to be said about it in many situations.
On to your second question: Clearly, using (->)/2 is almost always highly problematic in that it limits you to a particular direction of use, destroying the generality we expect from logical relations.
There are several solutions for this. If your CLP(FD) system supports zcompare/3 or a similar feature, you can write essence_/3 as follows:
essence_(N, X0, Back, Rest) :-
zcompare(C, X0, N),
closing(C, X0, Back, Rest).
closing(<, X0, [X1|Rest], Rest) :- X1 #= X0 + 1.
closing(=, _, [], _).
Another very nice meta-predicate called if_/3 was recently introduced in Indexing dif/2 by Ulrich Neumerkel and Stefan Kral. I leave implementing this with if_/3 as a very worthwhile and instructive exercise. Discussing this is well worth its own question!
On to the third question: How do states with DCGs relate to this? DCG notation is definitely useful if you want to pass around a global state to several predicates, where only a few of them need to access or modify the state, and most of them simply pass the state through. This is completely analogous to monads in Haskell.
The "normal" Prolog solution would be to extend each predicate with 2 arguments to describe the relation between the state before the call of the predicate, and the state after it. DCG notation lets you avoid this hassle.
Importantly, using DCG notation, you can copy imperative algorithms almost verbatim to Prolog, without the hassle of introducing many auxiliary arguments, even if you need global states. As an example for this, consider a fragment of Tarjan's strongly connected components algorithm in imperative terms:
function strongconnect(v)
// Set the depth index for v to the smallest unused index
v.index := index
v.lowlink := index
index := index + 1
S.push(v)
This clearly makes use of a global stack and index, which ordinarily would become new arguments that you need to pass around in all your predicates. Not so with DCG notation! For the moment, assume that the global entities are simply easily accessible, and so you can code the whole fragment in Prolog as:
scc_(V) -->
vindex_is_index(V),
vlowlink_is_index(V),
index_plus_one,
s_push(V),
This is a very good candidate for its own question, so consider this a teaser.
At last, I have a general remark: In my view, we are only at the beginning of finding a series of very powerful and general meta-predicates, and the solution space is still largely unexplored. call/N, maplist/[3,4], foldl/4 and other meta-predicates are definitely a good start. if_/3 has the potential to combine good performance with the generality we expect from Prolog predicates.
If your Prolog implementation supports freeze/2 or similar predicate (e.g. Swi-Prolog), then you can use following approach:
fac_list(L, N, Max) :-
(N >= Max, L = [Max], !)
;
freeze(L, (
L = [N|Rest],
N2 is N + 1,
fac_list(Rest, N2, Max)
)).
multiplication(X, Y, Z) :-
Z is Y * X.
factorial(N, Factorial) :-
fac_list(L, 1, N),
foldl(multiplication, L, 1, Factorial).
Example above first defines a predicate (fac_list) which creates a "lazy" list of increasing integer values starting from N up to maximum value (Max), where next list element is generated only after previous one was "accessed" (more on that below). Then, factorial just folds multiplication over lazy list, resulting in constant memory usage.
The key to understanding how this example works is remembering that Prolog lists are, in fact, just terms of arity 2 with name '.' (actually, in Swi-Prolog 7 the name was changed, but this is not important for this discussion), where first element represents list item and the second element represents tail (or terminating element - empty list, []). For example. [1, 2, 3] can be represented as:
.(1, .(2, .(3, [])))
Then, freeze is defined as follows:
freeze(+Var, :Goal)
Delay the execution of Goal until Var is bound
This means if we call:
freeze(L, L=[1|Tail]), L = [A|Rest].
then following steps will happen:
freeze(L, L=[1|Tail]) is called
Prolog "remembers" that when L will be unified with "anything", it needs to call L=[1|Tail]
L = [A|Rest] is called
Prolog unifies L with .(A, Rest)
This unification triggers execution of L=[1|Tail]
This, obviously, unifies L, which at this point is bound to .(A, Rest), with .(1, Tail)
As a result, A gets unified with 1.
We can extend this example as follows:
freeze(L1, L1=[1|L2]),
freeze(L2, L2=[2|L3]),
freeze(L3, L3=[3]),
L1 = [A|R2], % L1=[1|L2] is called at this point
R2 = [B|R3], % L2=[2|L3] is called at this point
R3 = [C]. % L3=[3] is called at this point
This works exactly like the previous example, except that it gradually generates 3 elements, instead of 1.
As per Boris's request, the second example implemented using freeze. Honestly, I'm not quite sure whether this answers the question, as the code (and, IMO, the problem) is rather contrived, but here it is. At least I hope this will give other people the idea what freeze might be useful for. For simplicity, I am using 1D problem instead of 2D, but changing the code to use 2 coordinates should be rather trivial.
The general idea is to have (1) function that generates new Open/Closed/Rest/etc. state based on previous one, (2) "infinite" list generator which can be told to "stop" generating new elements from the "outside", and (3) fold_step function which folds over "infinite" list, generating new state on each list item and, if that state is considered to be the last one, tells generator to halt.
It is worth to note that list's elements are used for no other reason but to inform generator to stop. All calculation state is stored inside accumulator.
Boris, please clarify whether this gives a solution to your problem. More precisely, what kind of data you were trying to pass to fold step handler (Item, Accumulator, Next Accumulator)?
adjacent(X, Y) :-
succ(X, Y) ;
succ(Y, X).
state_seq(State, L) :-
(State == halt -> L = [], !)
;
freeze(L, (
L = [H|T],
freeze(H, state_seq(H, T))
)).
fold_step(Item, Acc, NewAcc) :-
next_state(Acc, NewAcc),
NewAcc = _:_:_:NewRest,
(var(NewRest) ->
Item = next ;
Item = halt
).
next_state(Open:Set:Region:_Rest, NewOpen:NewSet:NewRegion:NewRest) :-
Open = [],
NewOpen = Open,
NewSet = Set,
NewRegion = Region,
NewRest = Set.
next_state(Open:Set:Region:Rest, NewOpen:NewSet:NewRegion:NewRest) :-
Open = [H|T],
partition(adjacent(H), Set, Adjacent, NotAdjacent),
append(Adjacent, T, NewOpen),
NewSet = NotAdjacent,
NewRegion = [H|Region],
NewRest = Rest.
set_region_rest(Ns, Region, Rest) :-
Ns = [H|T],
state_seq(next, L),
foldl(fold_step, L, [H]:T:[]:_, _:_:Region:Rest).
One fine improvement to the code above would be making fold_step a higher order function, passing it next_state as the first argument.