Prolog for loop syntax error - prolog

I am trying to make a game similar to minesweeper and i need to check the neighbours of a square in the map but i get a syntax error at my for loop, I am using SWI-Prolog
checkneighbours(X,Y) :-
retractall(vecini(_)),
assert(vecini(0)),
foreach(I in X-1..X+1,
(foreach J in Y-1..Y+1,
(map(I,J,Z),
( Z=:= "X"
-> vecini(V),
V1 is V+1,
assert(vecini(V1))
)
)
)
).
didn't I declare the loops right? or how can I loop between X-1 and X+1?

There are no real loops like that in Prolog. I am also not sure if it is wise to use assert to dynamically change the fact database (it is usually better to represent your data in a structure). But if you really insist to use a "loop" for its side effects, you should be using forall:
?- forall( between(-1,1,X), format('~d~n', [X]) ).
-1
0
1
true.

Related

SWI Prolog if statements, how do they work? Generating a simple grid

I realize I've edited out the if statements out of the original code which doesn't help readability and question clarity. Just skip to the answers for the explanation on how they work with a small example program.
To learn about more complex programs using if statements in Prolog, I'm creating a simple platformer that generates some objects and places them in a grid. First I'm trying to generate a simple 'world' with the idea of trying out generating things in prolog. The plan is to create a grid of 50 lists with 10000 items, which really shouldn't be that complicated but I can't get the if statements to work as I get the impression that I'm fundamentally misunderstanding how they work vs how I think they work. What happens is the condition isn't met, the if statement isn't called but the whole predicate is recalled with empty variables and evaluations are not instantiated.
Create a simple accumulator which has an X and Y axis, and limits to
how far they go before failing the predicate.
If the number of Y rows has been reached, terminate
Create a new [id, point(X,Y), Image] to be later filled with something
If X = end of the row, X is 0, else create the next point
Code:
generate(WorldList) :- generate_world(WorldList,0,_,10000,0,_,50).
generate_world([H|T],X,_,XEnd,Y,_,YEnd) :-
%Y has been filled with 50 rows, end recursion
not(Y > YEnd),
%iterate X by 1, store in XNew
XNew is X + 1,
%create a new [id,point(X,Y), Image]
H = [XNew,point(_,_)],
%if X has reached 10k, add 1 to Y and create a new row
X = XEnd -> YNew is Y + 1,
generate_world(T,0,_,XEnd,YNew,_,YEnd);
%continue adding items to current row Y
generate_world(T,XNew,_,XEnd,Y,_,YEnd).
generate_world([],_,_,_,_,_,_).
Am I doing something blatantly wrong or how are you supposed to use prolog conditional statements and can they even be used like this at all?
The way I expect it to work is a term is evaluated, then do what is to the left of the following OR if it's true, or the right if it's false. That happens, but I don't understand why the entire predicate is called again as it also empties the variables being evaluated. My brain hurts.
What the docs say: http://www.swi-prolog.org/pldoc/man?predicate=-%3E/2
#damianodamiano identified the problem, if statements in prolog need to be surrounded by () tags. I'd still like a more detailed explanation of how they actually work in regards to choice points, backtracking and other Prolog specific things I might not even know about.
Your predicate stops as soon as you run it because in not(By > YEnd), By is not instantiated (note that By is also a singleton variable and each singleton variable is useless and can drive to errors). Here i post two implementation, the first without if statement (which personally prefer), the second with if statement (i've put 2 and 2 as bound for brevity...).
First implementation:
generateList(L):-
generateWL(L,0,2,0,2).
generateWL([],0,_,Y,Y). %you can add a ! here
generateWL(L,MaxX,MaxX,R,MaxR):- %you can add a ! here
R1 is R+1,
generateWL(L,0,MaxX,R1,MaxR).
generateWL([H|T],X,MaxX,R,MaxR):-
X < MaxX,
R < MaxR,
X1 is X+1,
H = [X1,point(X1,R)],
generateWL(T,X1,MaxX,R,MaxR).
?- generateList(WL).
WL = [[1, point(1, 0)], [2, point(2, 0)], [1, point(1, 1)], [2, point(2, 1)]]
false
If you want to prevent backtracking, just add the two cuts i've annotated.
Second implementation
generateList2(L):-
generateWLIf(L,0,2,0,2).
generateWLIf([H|T],X,MaxX,R,MaxR):-
( X < MaxX, R < MaxR ->
X1 is X+1,
H = [X1,point(X1,R)],
generateWL(T,X1,MaxX,R,MaxR)
; X = MaxX, R < MaxR ->
R1 is R+1,
generateWL([H|T],0,MaxX,R1,MaxR)
; R = MaxR -> T = []).
?- generateList2(WL).
WL = [[1, point(1, 0)], [2, point(2, 0)], [1, point(1, 1)], [2, point(2, 1)]]
(Continuing from the comments)
The way I expect [conditional statements] to work is a term is
evaluated, then do what is to the left of the following OR if it's
true, or the right if it's false. That happens, but I don't understand
why the entire predicate is called again as it also empties the
variables being evaluated.
You probably mean that it back-tracks, and the reason is that the comparison not(Y > YEnd) eventually fails, and there is no else-clause (and no if either).
Also, your base case makes no sense, as the list is output not input. And you want to compare against XNew not X.
generate(WorldList) :-
generate_world(WorldList,1,10000,1,50).
generate_world(T,X,XEnd,Y,YEnd) :-
( Y = YEnd ->
T = []
; T = [point(X,Y)|Rest], XNew is X + 1,
( XNew = XEnd -> YNew is Y + 1,
generate_world(Rest,1,XEnd,YNew,YEnd)
; generate_world(Rest,XNew,XEnd,Y,YEnd) ) ).
This would seem to work in the sense that it does what you describe, but it is not good design. Now you have to pass this enormous list around all the time, and updating one location means deconstructing the list.
Your problem:
I'm creating a simple platformer that generates some objects and
places them in a grid. First I'm trying to generate a simple 'world'
with the idea of trying out generating things in prolog. The plan is
to create a grid of 50 lists with 10000 items
is much better solved in Prolog by having a predicate location/3 (for example) where the parameters are the coordinates and the content.
location(1,1,something).
location(1,2,something).
location(1,3,somethingelse).
...
And this predicate is created dynamically, using assert/3.
This is based on my understanding of ISO-prolog and the other answers given, boiled down to the essence of how if then else works in Prolog.
The if predicate -> forces evaluation its the surrounding complex terms grouped by ( and ). The outer brackets identify the if-statement as ( if -> then ; else ), where if,then and else are each goals in the form of terms to be evaluated, which return yes or no, also grouped by ( and ). Whether then or else is called, separated by the OR operator ;, depends on the yes or no result from the evaluated term represented by if. The outer groupings are strictly necessary while the inner ones are optional, BUT it's good practice in my opinion to add them anyway, given that you can nest another if statement as a term surrounded by () in the result of the first, which likely produces unwanted result and makes the code much harder to read, and any non-grouped nested ; will identify the right side as the else.
Choice points are created where there are variables that can have multiple possible answers as a possible solution to the posed goal. This means within an if, if a term can be satisfied in multiple ways, Prolog will try to satisfy that goal as a separate goal and then use the result to determine the outcome of the surrounding term. If a goal fails, it behaves like normal code and doesn't try to satisfy the goals further right.
If a choice point is before the whole if statement section, the whole section will be checked again.
Example program to clarify the idea.
fact(a).
fact(f).
start :-
(
%The entire complex term is evaluated as yes
(fact(a), write('first if'), nl) ->
%triggers the first line
(write('first then'),nl) ;
(write('first else'),nl)
),
(
%The entire complex term is evaluated as no
(fact(B), write('second if'), B = b, nl) ->
(write('second then'),nl) ;
%triggers the second line
(write('second else'),nl)
).
And the output for ?- start.
first if
first then
second ifsecond ifsecond else

Prolog - confused about return results of recursive rule

I'm playing around with recursion in Prolog, and I'm confused. I am trying to write rules that can determine if a number is even or odd. I know that there are other stackoverflow questions about this, but I don't care about having a working solution, I am more interested in knowing why mine doesn't work.
Here are my rules:
even(0).
even(N) :- N>0, N1 is N-1, odd(N1).
odd(N) :- N>0, N1 is N-1, even(N1).
When I query even(0), I get returned 2 results. The first result is true, the 2nd is false. This also happens with odd(1), even(2), odd(3), etc. Why am I getting 2 return results? Shouldn't I just get 1?
When you query even(0), it succeeds as you have seen. But you've also seen it prompts you for more results because it left a choicepoint, which is a place in the logic where Prolog decides it can come back and explore other alternatives for a potentially successful query. Upon going back to the choicepoint and attempting to find more solutions, it does not find more, so it comes back "false" since it found no more solutions. So it did just find one solution, but the choice point caused backtracking after which it found no additional solutions. This is the case with your other successful queries as well.
You'll note that if you make a more general query, it gives an error (example taken from GNU Prolog):
| ?- even(N).
N = 0 ? ;
uncaught exception: error(instantiation_error,(>)/2)
| ?-
This is because you are using specific arithmetic expression operators that require that the variables be instantiated. These are relational operators like (>)/2 and the is/2 operator. You can make the solution more relational by using the CLP(FD) operators which are designed for reasoning with integers:
even(0).
even(N) :-
N #> 0,
N1 #= N-1,
odd(N1).
odd(N) :-
N #> 0,
N1 #= N-1,
even(N1).
Then you get a more general solution, which is more complete and more useful:
| ?- even(N).
N = 0 ? ;
N = 2 ? ;
N = 4 ? ;
N = 6 ? ;
...
| ?- odd(N).
N = 1 ? ;
N = 3 ? ;
N = 5 ? ;
N = 7 ?
...
If you know there is at most one answer, or if you only care about the first possible answer, you can use once/1 (examples taken from SWI Prolog here):
2 ?- even(2).
true ;
false.
3 ?- once(even(2)).
true.
4 ?- even(N).
N = 0 ;
N = 2 ;
N = 4 ;
...
5 ?- once(even(N)).
N = 0.
6 ?-
As expected, once(even(N)) terminates after finding the first solution.
The return values you have are correct. The point is how Prolog is evaluating predicates. When you query i.e.
even(2)
Prolog firstly evaluate that this predicate is Yes / true. When going through next possibility it return No / false, because it cannot find any more.
To check what exactly is performed under the hood go to:
https://swish.swi-prolog.org
on the left side type rules (i.e. odd/even) and on the query window type like 'odd(2)', but just before running click 'solutions'->'debug(trace)'. It will let you go step by step of what Prolog is doing.
Also please take a look at the successor example in tutorial below.
http://www.learnprolognow.org/lpnpage.php?pagetype=html&pageid=lpn-htmlse9
from a link above, try such code for a reversed example:
numeral(0).
numeral(succ(X)) :- numeral(X).
Now evaluating numeral(0) for the first time return succ(0), another time succ(succ(0)) etc.
Each time next evaluation brings another possible solution for a query.
What Prolog does is a "depth-first search", which means Prolog walks through a decision tree until it either finds a solution and succeeds OR it fails. In either case a process called "backtracking" kicks in. Along the way, going through the tree of choices, Prolog keeps track of where it has MULTIPLE possible routes that could potentially satisfy the goal. Such a point in the decision tree is called a "choice point".
This means Prolog will
search ->
succeed or fail ->
go back to the last choice point ->
repeat until all possible paths have been tried
Given your program:
even(0).
even(N) :- N>0, N1 is N-1, odd(N1).
odd(N) :- N>0, N1 is N-1, even(N1).
We can clearly see TWO ways to satisfy even(0).. The first is the fact even(0) and the second is the recursive rule even(N). Prolog reads top to bottom, left to right so the first encounter is even(0). which is true, and the second is even(N). which goes through N-1 making the result N1 = -1, then goes through odd(N) making the result N1 = -2, which in unequal to even(0). so it fails and then calls even(N) again. Your specific version of Prolog likely sees that it is an infinitely recursive predicate and doesn't even try to satisfy it even though it's a valid declarative path , but not a valid procedural path.
If you know that the mode is (+), you can place a cut,
to suppress the unnecessary choice point:
even(0) :- !.
even(N) :- N > 0, N1 is N-1, odd(N1).
odd(N) :- N > 0, N1 is N-1, even(N1).
The above is better than wrapping a query with
once/1 since it allows the Prolog interpreter to
use last call optimization. There is now no more
problem with an extra choice point:
?- even(3).
false.
?- even(4).
true.
But if the mode is not fixed, you have to be more careful
with cuts. Probably write a separate carefully crafted
predicate for each mode.
CLP(FD) itself seems not to help, it cannot avoid the need
to place cuts, but can sometimes avoid the need to code
different variants for different modes.

Prolog sequences

Good Day,
I have a task (not homework), but test preparation question. Given a value of n where n > 0. I need to find out what 3**n value is. I do have something that works.
% expo
expo([],[]).
expo([X|T], [Y|Result]):-
number(X),
Y is 3 ^ X,
expo(T,Result).
expo([ThrowAway|Tail], [ThrowAway|Result]):-
expo(Tail,Result).
last([X]):-
write("M = "),
write(X).
last([Y|Tail]):-
last(Tail).
do_list(N) :-
findall(Num, between(0, N, Num), L),
expo(L, E),
last(E).
When I run this at the console:
do_list(4).
M = 81
true.
So it does give me what I want. But is a recursive solution necessary? I just want to generate a sequence of numbers and use those numbers as my exponent which I have done, but I had to create two lists to this.
Ideally, I'd like to do:
do_list(4, M).
M = 81
true.
Is this possible to do this without two lists? Is it possible without recursion? I'm new to Prolog, so it's taking me a little getting used to "thinking" in Prolog.
TIA,
coson
If you want to do something in all elements of a list then yes most of the times you need recursion (except from cases like when you use predicates like fundall/3 which does the recursion ...).
If you want to return your result in an argument and not just print it then you need for the above predicate two lists (one is the input and the other one is the output).
Though I don't understand why not just writing:
find_pow(Input,Output):-Output is 3^Input.
From what I understood you calculate 3^i for every i<=n and keep last element which could be done independently. So if I understood corrctly what you're trying to do, this could be done without using lists and recursion (if you use predefined pow function ^ else if you write a predicate that computes the power 3^n then you would use recursion... ).
Example:
?- find_pow(4,X).
X = 81.

Counter in prolog

I want to create a counter in prolog.
Something like starting it init/0.
Adding 1 increment/0,
and something like get_counter/1. To get the value.
But I don't know how to start something if you have init/0 with no inputs how to set something to 0.
Can someone give me some tips how I should try to do this?
I'm not a native speaker, so if it's not clear what I mean I'm sorry.
Here is something that sort of does what you are trying to achieve:
?- X0 = 0 /* init */, succ(X0, X1) /* inc */, succ(X1, X2) /* inc */.
X0 = 0,
X1 = 1,
X2 = 2.
The init is just giving the variable a value, incrementing is done with succ/2, and the getval is implicit.
However, as I already said in the comment, consider your use case! If you are trying to keep track of how deep inside a loop you are, it is perfectly fine to do it with succ/2 or even following the suggestion by #mat.
So, to count the number of foos in a list:
list_foos([], 0).
list_foos([X|Xs], N) :-
( dif(X, foo)
-> list_foos(Xs, N)
; list_foos(Xs, N0),
succ(N0, N) % or: N0 + 1 #= N
).
You should try out both succ(N0, N) and N0 + 1 #= N to see how you can use them when either one or both of the arguments to list_foos/2 are not ground.
If, however, you need to maintain a global state for some reason: say, you are dynamically changing the database and you need to generate an increasing integer key for a table. Then, you should consider the answer by #coredump. Keep in mind that it is not super easy to write code that runs on any Prolog implementation once you start using "global" variables. One attempt would be to use the predicates for manipulating the database:
:- dynamic foocounter/1.
initfoo :-
retractall(foocounter(_)),
assertz(foocounter(0)).
incrfoo :-
foocounter(V0),
retractall(foocounter(_)),
succ(V0, V),
assertz(foocounter(V)).
And then, you can now count with a global state (it does not need to be in a conjunction like your example use):
?- initfoo.
true.
?- incrfoo.
true.
?- incrfoo.
true.
?- foocounter(V).
V = 2.
This is perfectly valid code but there are many pitfalls, so use with care.
I would use ECLiPSe's non-local variables:
init :- setval(counter, 0).
increment :- incval(counter).
get_counter(V) :- getval(counter, V).
Your implementation might provide something similar. In SWI-prolog, it seems that the same can be achieved with nb_setval (non-backtrackable setval).
A declarative way to solve this is to see this as a relation between two counter values: One before the increment, and one after the increment.
You can use CLP(FD) constraints to relate the two counter values:
counter_next(C0, C) :- C0 + 1 #= C.
Such a predicate is completely pure and can be used in all directions.
A sequence of such relations describes repeatedly incrementing the counter, relating an initial value to its final state:
?- S0 = 0, counter_next(S0, S1), counter_next(S1, S).
S = 2,
S0 = 0,
S1 = 1
EDIT: Suppose you go the other way and manage to implement a 0-ary predicate increment/0, as you ask for, destructively incrementing a global resource. Then you will have severe declarative problems. For example, incrementing the counter must succeed, so we can expect to see:
?- increment.
true.
But this means that the original query is no longer equivalent to its own answer, because the query:
?- true.
true.
certainly does not increment the counter.
It also means you can no longer test and reason about your predicates in isolation, but have to think about the global resource all the time.
This in turn will make it much harder to understand and correct mistakes in your code.
Therefore, I strongly recommend you adopt a declarative way to think about this task, and make the relation between counter values before and after incrementing explicit. As an additional benefit, you can then also use these relations in the other direction, and ask for example: "Which initial counter values, if any, yield a given value when incremented?", or even more generally: "For which arguments does this relation even hold?"

Sum of a list in prolog

I'm reading 'the art of prolog' book and I found an exercise that reads 'Define the relation sum(ListOfIntegers,Sum) which holds if Sum is the sum of the ListOfIntegers, without using any auxiliary predicate' .I came up with this solution:
sum([],Sum).
sum([0|Xs], Sum):-sum(Xs, Sum).
sum([s(X)|Xs], Sum):-sum([X|Xs],s(Sum)).
Which does not work exactly as I would want it to.
?- sum([s(s(0)),s(0),s(s(s(0)))],X).
true ;
false.
I was expecting X to be
s(s(s(s(s(s(0))))))
I thought that the problem is that I have to 'initialize' Sum to 0 in the first 'iteration' but that would be very procedural and unfortunately I'm not quite apt in prolog to make that work.
Any ideas or suggestions?
Your first clause should read
sum([], 0).
With that change, the vacuous true return goes away and you're left with one problem: the third clause reverses the logic of summation. It should be
sum([s(X)|Xs], s(Sum)) :- sum([X|Xs], Sum).
because the number of s/1 terms in the left argument to sum/2 should be equal to the number of them in the right argument.
The best way to localize the problem is to first simplify your query:
?- sum([0],S).
true.
?- sum([],S).
true.
Even for those, you get as an answer that any S will do. Like
?- sum([],s(s(0))).
true.
Since [] can only be handled by your fact, an error must lie in that very fact.
You stated:
sum([], Sum).
Which means that the sum of [] is just anything. You probably meant 0.
Another error hides in the last rule... After fixing the first error, we get
?- sum([0],Sum).
Sum = 0.
?- sum([s(0)],Sum).
false.
Here, the last clause is responsible. It reads:
sum([s(X)|Xs], Sum):-sum([X|Xs],s(Sum)).
Recursive rules are relatively tricky to read in Prolog. The simplest way to understand them is to look at the :- and realize that this should be an arrow ← (thus a right-to-left arrow) meaning:
provided, that the goals on the right-hand side are truewe conclude what is found on the left-hand side
So, compared to informal writing, the arrows points into the opposite direction!
For our query, we can consider the following instantiation substituting Xs with [] and X with 0.
sum([s(0)| [] ], Sum) :- sum([0| []],s(Sum)).
So this rule now reads right-to-left: Provided, sum([0],s(Sum)) is true, ... However, we do know that only sum([0],0) holds, but not that goal. Therefore, this rule never applies! What you intended was rather the opposite:
sum([s(X)|Xs], s(Sum)):-sum([X|Xs],Sum).
I'm not really following your logic, what with all the seemingle extraneous s(X) structures floating about.
Wouldn't it be easier and simpler to do something like this?
First, define your solution in plain english, thus:
The sum of an empty list is 0.
The sum of a non-empty list is obtained by adding the head of the list to the sum of the tail of the list.
From that definition, the prolog follows directly:
sum( [] , 0 ) . % the sum of an empty list is 0.
sum( [X|Xs] , T ) :- % the sum of an non-empty list is obtained by:
sum( Xs , T1 ) , % - first computing the sum of the tail
T is X + T1 % - and then, adding that the to head of the list
. % Easy!

Resources