How to compute Discrete Fourier Transform? - algorithm

I've been trying to find some places to help me better understand DFT and how to compute it but to no avail. So I need help understanding DFT and it's computation of complex numbers.
Basically, I'm just looking for examples on how to compute DFT with an explanation on how it was computed because in the end, I'm looking to create an algorithm to compute it.

I assume 1D DFT/IDFT ...
All DFT's use this formula:
X(k) is transformed sample value (complex domain)
x(n) is input data sample value (real or complex domain)
N is number of samples/values in your dataset
This whole thing is usually multiplied by normalization constant c. As you can see for single value you need N computations so for all samples it is O(N^2) which is slow.
Here mine Real<->Complex domain DFT/IDFT in C++ you can find also hints on how to compute 2D transform with 1D transforms and how to compute N-point DCT,IDCT by N-point DFT,IDFT there.
Fast algorithms
There are fast algorithms out there based on splitting this equation to odd and even parts of the sum separately (which gives 2x N/2 sums) which is also O(N) per single value, but the 2 halves are the same equations +/- some constant tweak. So one half can be computed from the first one directly. This leads to O(N/2) per single value. if you apply this recursively then you get O(log(N)) per single value. So the whole thing became O(N.log(N)) which is awesome but also adds this restrictions:
All DFFT's need the input dataset is of size equal to power of two !!!
So it can be recursively split. Zero padding to nearest bigger power of 2 is used for invalid dataset sizes (in audio tech sometimes even phase shift). Look here:
mine Complex->Complex domain DFT,DFFT in C++
some hints on constructing FFT like algorithms
Complex numbers
c = a + i*b
c is complex number
a is its real part (Re)
b is its imaginary part (Im)
i*i=-1 is imaginary unit
so the computation is like this
addition:
c0+c1=(a0+i.b0)+(a1+i.b1)=(a0+a1)+i.(b0+b1)
multiplication:
c0*c1=(a0+i.b0)*(a1+i.b1)
=a0.a1+i.a0.b1+i.b0.a1+i.i.b0.b1
=(a0.a1-b0.b1)+i.(a0.b1+b0.a1)
polar form
a = r.cos(θ)
b = r.sin(θ)
r = sqrt(a.a + b.b)
θ = atan2(b,a)
a+i.b = r|θ
sqrt
sqrt(r|θ) = (+/-)sqrt(r)|(θ/2)
sqrt(r.(cos(θ)+i.sin(θ))) = (+/-)sqrt(r).(cos(θ/2)+i.sin(θ/2))
real -> complex conversion:
complex = real+i.0
[notes]
do not forget that you need to convert data to different array (not in place)
normalization constant on FFT recursion is tricky (usually something like /=log2(N) depends also on the recursion stopping condition)
do not forget to stop the recursion if N=1 or 2 ...
beware FPU can overflow on big datasets (N is big)
here some insights to DFT/DFFT
here 2D FFT and wrapping example
usually Euler's formula is used to compute e^(i.x)=cos(x)+i.sin(x)
here How do I obtain the frequencies of each value in an FFT?
you find how to obtain the Niquist frequencies
[edit1] Also I strongly recommend to see this amazing video (I just found):
But what is the Fourier Transform A visual introduction
It describes the (D)FT in geometric representation. I would change some minor stuff in it but still its amazingly simple to understand.

Related

How are sparse Ax = b systems solved in practice?

Let A be an n x n sparse matrix, represented by a sequence of m tuples of the form (i,j,a) --- with indices i,j (between 0 and n-1) and a being a value a in the underlying field F.
What algorithms are used, in practice, to solve linear systems of equations of the form Ax = b? Please describe them, don't just link somewhere.
Notes:
I'm interested both in exact solutions for finite fields, and in exact and bounded-error solutions for reals or complex numbers using floating-point representation. I suppose exact or bounded-solutions for rational numbers are also interesting.
I'm particularly interested in parallelizable solutions.
A is not fixed, i.e. you don't just get different b's for the same A.
The main two algorithms that I have used and parallelised are the Wiedemann algorithm and the Lanczos algorithm (and their block variants for GF(2) computations), both of which are better than structured gaussian elimination.
The LaMacchia-Odlyzo paper (the one for the Lanczos algorithm) will tell you what you need to know. The algorithms involve repeatedly multiplying your sparse matrix by a sequence of vectors. To do this efficiently, you need to use the right data structure (linked list) to make the matrix-vector multiply time proportional to the number of non-zero values in the matrix (i.e. the sparsity).
Paralellisation of these algorithms is trivial, but optimisation will depend upon the architecture of your system. The parallelisation of the matrix-vector multiply is done by splitting the matrix into blocks of rows (each processor gets one block), each block of rows multiplies by the vector separately. Then you combine the results to get the new vector.
I've done these types of computations extensively. The original authors that broke the RSA-129 factorisation took 6 weeks using structured gaussian elimination on a 16,384 processor MasPar. On the same machine, I worked with Arjen Lenstra (one of the authors) to solve the matrix in 4 days with block Wiedemann and 1 day with block Lanczos. Unfortunately, I never published the result!

Algorithm to generate a (pseudo-) random high-dimensional function

I don't mean a function that generates random numbers, but an algorithm to generate a random function
"High dimension" means the function is multi-variable, e.g. a 100-dim function has 100 different variables.
Let's say the domain is [0,1], we need to generate a function f:[0,1]^n->[0,1]. This function is chosen from a certain class of functions, so that the probability of choosing any of these functions is the same.
(This class of functions can be either all continuous, or K-order derivative, whichever is convenient for the algorithm.)
Since the functions on a closed interval domain are uncountable infinite, we only require the algorithm to be pseudo-random.
Is there a polynomial time algorithm to solve this problem?
I just want to add a possible algorithm to the question(but not feasible due to its exponential time complexity). The algorithm was proposed by the friend who actually brought up this question in the first place:
The algorithm can be simply described as following. First, we assume the dimension d = 1 for example. Consider smooth functions on the interval I = [a; b]. First, we split the domain [a; b] into N small intervals. For each interval Ii, we generate a random number fi living in some specific distributions (Gaussian or uniform distribution). Finally, we do the interpolation of
series (ai; fi), where ai is a characteristic point of Ii (eg, we can choose ai as the middle point of Ii). After interpolation, we gain a smooth curve, which can be regarded as a one dimensional random function construction living in the function space Cm[a; b] (where m depends on the interpolation algorithm we choose).
This is just to say that the algorithm does not need to be that formal and rigorous, but simply to provide something that works.
So if i get it right you need function returning scalar from vector;
The easiest way I see is the use of dot product
for example let n be the dimensionality you need
so create random vector a[n] containing random coefficients in range <0,1>
and the sum of all coefficients is 1
create float a[n]
feed it with positive random numbers (no zeros)
compute the sum of a[i]
divide a[n] by this sum
now the function y=f(x[n]) is simply
y=dot(a[n],x[n])=a[0]*x[0]+a[1]*x[1]+...+a[n-1]*x[n-1]
if I didn't miss something the target range should be <0,1>
if x==(0,0,0,..0) then y=0;
if x==(1,1,1,..1) then y=1;
If you need something more complex use higher order of polynomial
something like y=dot(a0[n],x[n])*dot(a1[n],x[n]^2)*dot(a2[n],x[n]^3)...
where x[n]^2 means (x[0]*x[0],x[1]*x[1],...)
Booth approaches results in function with the same "direction"
if any x[i] rises then y rises too
if you want to change that then you have to allow also negative values for a[]
but to make that work you need to add some offset to y shifting from negative values ...
and the a[] normalization process will be a bit more complex
because you need to seek the min,max values ...
easier option is to add random flag vector m[n] to process
m[i] will flag if 1-x[i] should be used instead of x[i]
this way all above stays as is ...
you can create more types of mapping to make it even more vaiable
This might not only be hard, but impossible if you actually want to be able to generate every continuous function.
For the one-dimensional case you might be able to create a useful approximation by looking into the Faber-Schauder-System (also see wiki). This gives you a Schauder-basis for continuous functions on an interval. This kind of basis only covers the whole vectorspace if you include infinite linear combinations of basisvectors. Thus you can create some random functions by building random linear combinations from this basis, but in general you won't be able to create functions that are actually represented by an infinite amount of basisvectors this way.
Edit in response to your update:
It seems like choosing a random polynomial function of order K (for the class of K-times differentiable functions) might be sufficient for you since any of these functions can be approximated (around a given point) by one of those (see taylor's theorem). Choosing a random polynomial function is easy, since you can just pick K random real numbers as coefficients for your polynom. (Note that this will for example not return functions similar to abs(x))

Why does FFT produce complex numbers instead of real numbers?

All the FFT implementations we have come across result in complex values (with real and imaginary parts), even if the input to the algorithm was a discrete set of real numbers (integers).
Is it not possible to represent frequency domain in terms of real numbers only?
The FFT is fundamentally a change of basis. The basis into which the FFT changes your original signal is a set of sine waves instead. In order for that basis to describe all the possible inputs it needs to be able to represent phase as well as amplitude; the phase is represented using complex numbers.
For example, suppose you FFT a signal containing only a single sine wave. Depending on phase you might well get an entirely real FFT result. But if you shift the phase of your input a few degrees, how else can the FFT output represent that input?
edit: This is a somewhat loose explanation, but I'm just trying to motivate the intuition.
The FFT provides you with amplitude and phase. The amplitude is encoded as the magnitude of the complex number (sqrt(x^2+y^2)) while the phase is encoded as the angle (atan2(y,x)). To have a strictly real result from the FFT, the incoming signal must have even symmetry (i.e. x[n]=conj(x[N-n])).
If all you care about is intensity, the magnitude of the complex number is sufficient for analysis.
Yes, it is possible to represent the FFT frequency domain results of strictly real input using only real numbers.
Those complex numbers in the FFT result are simply just 2 real numbers, which are both required to give you the 2D coordinates of a result vector that has both a length and a direction angle (or magnitude and a phase). And every frequency component in the FFT result can have a unique amplitude and a unique phase (relative to some point in the FFT aperture).
One real number alone can't represent both magnitude and phase. If you throw away the phase information, that could easily massively distort the signal if you try to recreate it using an iFFT (and the signal isn't symmetric). So a complete FFT result requires 2 real numbers per FFT bin. These 2 real numbers are bundled together in some FFTs in a complex data type by common convention, but the FFT result could easily (and some FFTs do) just produce 2 real vectors (one for cosine coordinates and one for sine coordinates).
There are also FFT routines that produce magnitude and phase directly, but they run more slowly than FFTs that produces a complex (or two real) vector result. There also exist FFT routines that compute only the magnitude and just throw away the phase information, but they usually run no faster than letting you do that yourself after a more general FFT. Maybe they save a coder a few lines of code at the cost of not being invertible. But a lot of libraries don't bother to include these slower and less general forms of FFT, and just let the coder convert or ignore what they need or don't need.
Plus, many consider the math involved to be a lot more elegant using complex arithmetic (where, for strictly real input, the cosine correlation or even component of an FFT result is put in the real component, and the sine correlation or odd component of the FFT result is put in the imaginary component of a complex number.)
(Added:) And, as yet another option, you can consider the two components of each FFT result bin, instead of as real and imaginary components, as even and odd components, both real.
If your FFT coefficient for a given frequency f is x + i y, you can look at x as the coefficient of a cosine at that frequency, while the y is the coefficient of the sine. If you add these two waves for a particular frequency, you will get a phase-shifted wave at that frequency; the magnitude of this wave is sqrt(x*x + y*y), equal to the magnitude of the complex coefficient.
The Discrete Cosine Transform (DCT) is a relative of the Fourier transform which yields all real coefficients. A two-dimensional DCT is used by many image/video compression algorithms.
The discrete Fourier transform is fundamentally a transformation from a vector of complex numbers in the "time domain" to a vector of complex numbers in the "frequency domain" (I use quotes because if you apply the right scaling factors, the DFT is its own inverse). If your inputs are real, then you can perform two DFTs at once: Take the input vectors x and y and calculate F(x + i y). I forget how you separate the DFT afterwards, but I suspect it's something about symmetry and complex conjugates.
The discrete cosine transform sort-of lets you represent the "frequency domain" with the reals, and is common in lossy compression algorithms (JPEG, MP3). The surprising thing (to me) is that it works even though it appears to discard phase information, but this also seems to make it less useful for most signal processing purposes (I'm not aware of an easy way to do convolution/correlation with a DCT).
I've probably gotten some details wrong ;)
The way you've phrased this question, I believe you are looking for a more intuitive way of thinking rather than a mathematical answer. I come from a mechanical engineering background and this is how I think about the Fourier transform. I contextualize the Fourier transform with reference to a pendulum. If we have only the x-velocity vs time of a pendulum and we are asked to estimate the energy of the pendulum (or the forcing source of the pendulum), the Fourier transform gives a complete answer. As usually what we are observing is only the x-velocity, we might conclude that the pendulum only needs to be provided energy equivalent to its sinusoidal variation of kinetic energy. But the pendulum also has potential energy. This energy is 90 degrees out of phase with the potential energy. So to keep track of the potential energy, we are simply keeping track of the 90 degree out of phase part of the (kinetic)real component. The imaginary part may be thought of as a 'potential velocity' that represents a manifestation of the potential energy that the source must provide to force the oscillatory behaviour. What is helpful is that this can be easily extended to the electrical context where capacitors and inductors also store the energy in 'potential form'. If the signal is not sinusoidal of course the transform is trying to decompose it into sinusoids. This I see as assuming that the final signal was generated by combined action of infinite sources each with a distinct sinusoid behaviour. What we are trying to determine is a strength and phase of each source that creates the final observed signal at each time instant.
PS: 1) The last two statements is generally how I think of the Fourier transform itself.
2) I say potential velocity rather the potential energy as the transform usually does not change dimensions of the original signal or physical quantity so it cannot shift from representing velocity to energy.
Short answer
Why does FFT produce complex numbers instead of real numbers?
The reason FT result is a complex array is a complex exponential multiplier is involved in the coefficients calculation. The final result is therefore complex. FT uses the multiplier to correlate the signal against multiple frequencies. The principle is detailed further down.
Is it not possible to represent frequency domain in terms of real numbers only?
Of course the 1D array of complex coefficients returned by FT could be represented by a 2D array of real values, which can be either the Cartesian coordinates x and y, or the polar coordinates r and θ (more here). However...
Complex exponential form is the most suitable form for signal processing
Having only real data is not so useful.
On one hand it is already possible to get these coordinates using one of the functions real, imag, abs and angle.
On the other hand such isolated information is of very limited interest. E.g. if we add two signals with the same amplitude and frequency, but in phase opposition, the result is zero. But if we discard the phase information, we just double the signal, which is totally wrong.
Contrary to a common belief, the use of complex numbers is not because such a number is a handy container which can hold two independent values. It's because processing periodic signals involves trigonometry all the time, and there is a simple way to move from sines and cosines to more simple complex numbers algebra: Euler's formula.
So most of the time signals are just converted to their complex exponential form. E.g. a signal with frequency 10 Hz, amplitude 3 and phase π/4 radians:
can be described by x = 3.ei(2π.10.t+π/4).
splitting the exponent: x = 3.ei.π/4 times ei.2π.10.t, t being the time.
The first number is a constant called the phasor. A common compact form is 3∠π/4. The second number is a time-dependent variable called the carrier.
This signal 3.ei.π/4 times ei.2π.10.t is easily plotted, either as a cosine (real part) or a sine (imaginary part):
from numpy import arange, pi, e, real, imag
t = arange(0, 0.2, 1/200)
x = 3 * e ** (1j*pi/4) * e ** (1j*2*pi*10*t)
ax1.stem(t, real(x))
ax2.stem(t, imag(x))
Now if we look at FT coefficients, we see they are phasors, they don't embed the frequency which is only dependent on the number of samples and the sampling frequency.
Actually if we want to plot a FT component in the time domain, we have to separately create the carrier from the frequency found, e.g. by calling fftfreq. With the phasor and the carrier we have the spectral component.
A phasor is a vector, and a vector can turn
Cartesian coordinates are extracted by using real and imag functions, the phasor used above, 3.e(i.π/4), is also the complex number 2.12 + 2.12j (i is j for scientists and engineers). These coordinates can be plotted on a plane with the vertical axis representing i (left):
This point can also represent a vector (center). Polar coordinates can be used in place of Cartesian coordinates (right). Polar coordinates are extracted by abs and angle. It's clear this vector can also represent the phasor 3∠π/4 (short form for 3.e(i.π/4))
This reminder about vectors is to introduce how phasors are manipulated. Say we have a real number of amplitude 1, which is not less than a complex which angle is 0 and also a phasor (x∠0). We also have a second phasor (3∠π/4), and we want the product of the two phasors. We could compute the result using Cartesian coordinates with some trigonometry, but this is painful. The easiest way is to use the complex exponential form:
we just add the angles and multiply the real coefficients: 1.e(i.0) times 3.e(i.π/4) = 1x3.ei(0+π/4) = 3.e(i.π/4)
we can just write: (1∠0) times (3∠π/4) = (3∠π/4).
Whatever, the result is this one:
The practical effect is to turn the real number and scale its magnitude. In FT, the real is the sample amplitude, and the multiplier magnitude is actually 1, so this corresponds to this operation, but the result is the same:
This long introduction was to explain the math behind FT.
How spectral coefficients are created by FT
FT principle is, for each spectral coefficient to compute:
to multiply each of the samples amplitudes by a different phasor, so that the angle is increasing from the first sample to the last,
to sum all the previous products.
If there are N samples xn (0 to N-1), there are N spectral coefficients Xk to compute. Calculation of coefficient Xk involves multiplying each sample amplitude xn by the phasor e-i2πkn/N and taking the sum, according to FT equation:
In the N individual products, the multiplier angle varies according to 2π.n/N and k, meaning the angle changes, ignoring k for now, from 0 to 2π. So while performing the products, we multiply a variable real amplitude by a phasor which magnitude is 1 and angle is going from 0 to a full round. We know this multiplication turns and scales the real amplitude:
Source: A. Dieckmann from Physikalisches Institut der Universität Bonn
Doing this summation is actually trying to correlate the signal samples to the phasor angular velocity, which is how fast its angle varies with n/N. The result tells how strong this correlation is (amplitude), and how much synchroneous it is (phase).
This operation is repeated for the k spectral coefficients to compute (half with k negative, half with k positive). As k changes, the angle increment also varies, so the correlation is checked against another frequency.
Conclusion
FT results are neither sines nor cosines, they are not waves, they are phasors describing a correlation. A phasor is a constant, expressed as a complex exponential, embedding both amplitude and phase. Multiplied by a carrier, which is also a complex exponential, but variable, dependent on time, they draw helices in time domain:
Source
When these helices are projected onto the horizontal plane, this is done by taking the real part of the FT result, the function drawn is the cosine. When projected onto the vertical plane, which is done by taking the imaginary part of the FT result, the function drawn is the sine. The phase determines at which angle the helix starts and therefore without the phase, the signal cannot be reconstructed using an inverse FT.
The complex exponential multiplier is a tool to transform the linear velocity of amplitude variations into angular velocity, which is frequency times 2π. All that revolves around Euler's formula linking sinusoid and complex exponential.
For a signal with only cosine waves, fourier transform, aka. FFT produces completely real output. For a signal composed of only sine waves, it produces completely imaginary output. A phase shift in any of the signals will result in a mix of real and complex. Complex numbers (in this context) are merely another way to store phase and amplitude.

Search engines/algorithms to find closest continuous (floating point) sampled signal?

Given any two sequences/vectors of M real numbers, I can easily compute their closeness or correlation using a variety of metrics/norms. But is there an efficient structure to look up the closest M-sequence in a corpus of sequences, or the closest subsequence of a longer sequence? A sliding window would be the naive/brute-force approach. Does anyone know of anything better, though?
EDIT: As I'm typing this, I'm thinking that something like searching in a K-d tree might work, where each offset is a separate dimension in an M-dimensional space?
The problem with acceleration structures (such as K-d trees) is that they become less effective as the dimensionality (M, in the question) increases. If your M is very large, you might be better off with a linear search.
If your M is of moderate size (up to something like 6 or so, as a ballpark guess?), it may be worth trying a K-d tree. There are search structures available for higher-dimensional spaces; I recommend looking up Foundations of Multidimensional and Metric Data Structures, by Samet.
If a sliding window would work, you're probably doing a cross-correlation, in which case you can use FFTs to solve your problem faster by a factor of O(n/log(n)).
So if you have a vector V, and a corpus of C other vectors, and all vectors are size N, then the sliding window solution would take O(N^2 * C) time. By using FFTs you can reduce a single sliding window from O(N^2) to O(N log N), so the total time would be O(CN log N).
If you aren't familiar with FFTs then you will probably need to read up on them before using them, but the general idea is this:
# If you forget to take the complex conjugate of V you'll be doing a
# convolution instead of a correlation
V' := Fft(Conjugate(V))
for each vector W in C:
W' := Fft(W)
P := W' * V' # Multiplication here is the dot product
R := inverse_Fft(P)
# Check through the vector R for any spikes, a large value at
# R[i] indicates that if you shift W' by i then it will
# correlate strongly with W
Caveats:
1) If you're doing correlations at all you'll need to normalize your vectors, or at least do something to make sure you don't get false positives from vectors whose values are just larger and more positive than other vectors. If yours is a typical use case of looking for a signal in noise, though, then you're fine.
2) FFTs correlate under the assumption that all of these signals are circular. If you don't want to treat them like they're circular then you need to add a buffer of 0's to the end of each vector to double its length.

Random projection algorithm pseudo code

I am trying to apply Random Projections method on a very sparse dataset. I found papers and tutorials about Johnson Lindenstrauss method, but every one of them is full of equations which makes no meaningful explanation to me. For example, this document on Johnson-Lindenstrauss
Unfortunately, from this document, I can get no idea about the implementation steps of the algorithm. It's a long shot but is there anyone who can tell me the plain English version or very simple pseudo code of the algorithm? Or where can I start to dig this equations? Any suggestions?
For example, what I understand from the algorithm by reading this paper concerning Johnson-Lindenstrauss is that:
Assume we have a AxB matrix where A is number of samples and B is the number of dimensions, e.g. 100x5000. And I want to reduce the dimension of it to 500, which will produce a 100x500 matrix.
As far as I understand: first, I need to construct a 100x500 matrix and fill the entries randomly with +1 and -1 (with a 50% probability).
Edit:
Okay, I think I started to get it. So we have a matrix A which is mxn. We want to reduce it to E which is mxk.
What we need to do is, to construct a matrix R which has nxk dimension, and fill it with 0, -1 or +1, with respect to 2/3, 1/6 and 1/6 probability.
After constructing this R, we'll simply do a matrix multiplication AxR to find our reduced matrix E. But we don't need to do a full matrix multiplication, because if an element of Ri is 0, we don't need to do calculation. Simply skip it. But if we face with 1, we just add the column, or if it's -1, just subtract it from the calculation. So we'll simply use summation rather than multiplication to find E. And that is what makes this method very fast.
It turned out a very neat algorithm, although I feel too stupid to get the idea.
You have the idea right. However as I understand random project, the rows of your matrix R should have unit length. I believe that's approximately what the normalizing by 1/sqrt(k) is for, to normalize away the fact that they're not unit vectors.
It isn't a projection, but, it's nearly a projection; R's rows aren't orthonormal, but within a much higher-dimensional space, they quite nearly are. In fact the dot product of any two of those vectors you choose will be pretty close to 0. This is why it is a generally good approximation of actually finding a proper basis for projection.
The mapping from high-dimensional data A to low-dimensional data E is given in the statement of theorem 1.1 in the latter paper - it is simply a scalar multiplication followed by a matrix multiplication. The data vectors are the rows of the matrices A and E. As the author points out in section 7.1, you don't need to use a full matrix multiplication algorithm.
If your dataset is sparse, then sparse random projections will not work well.
You have a few options here:
Option A:
Step 1. apply a structured dense random projection (so called fast hadamard transform is typically used). This is a special projection which is very fast to compute but otherwise has the properties of a normal dense random projection
Step 2. apply sparse projection on the "densified data" (sparse random projections are useful for dense data only)
Option B:
Apply SVD on the sparse data. If the data is sparse but has some structure SVD is better. Random projection preserves the distances between all points. SVD preserves better the distances between dense regions - in practice this is more meaningful. Also people use random projections to compute the SVD on huge datasets. Random Projections gives you efficiency, but not necessarily the best quality of embedding in a low dimension.
If your data has no structure, then use random projections.
Option C:
For data points for which SVD has little error, use SVD; for the rest of the points use Random Projection
Option D:
Use a random projection based on the data points themselves.
This is very easy to understand what is going on. It looks something like this:
create a n by k matrix (n number of data point, k new dimension)
for i from 0 to k do #generate k random projection vectors
randomized_combination = feature vector of zeros (number of zeros = number of features)
sample_point_ids = select a sample of point ids
for each point_id in sample_point_ids do:
random_sign = +1/-1 with prob. 1/2
randomized_combination += random_sign*feature_vector[point_id] #this is a vector operation
normalize the randomized combination
#note that the normal random projection is:
# randomized_combination = [+/-1, +/-1, ...] (k +/-1; if you want sparse randomly set a fraction to 0; also good to normalize by length]
to project the data points on this random feature just do
for each data point_id in dataset:
scores[point_id, j] = dot_product(feature_vector[point_id], randomized_feature)
If you are still looking to solve this problem, write a message here, I can give you more pseudocode.
The way to think about it is that a random projection is just a random pattern and the dot product (i.e. projecting the data point) between the data point and the pattern gives you the overlap between them. So if two data points overlap with many random patterns, those points are similar. Therefore, random projections preserve similarity while using less space, but they also add random fluctuations in the pairwise similarities. What JLT tells you is that to make fluctuations 0.1 (eps)
you need about 100*log(n) dimensions.
Good Luck!
An R Package to perform Random Projection using Johnson- Lindenstrauss Lemma
RandPro

Resources