Access Uncaptured Proc Arguments - ruby

Can I access uncaptured arguments to an invoked ruby Proc?
Ruby Procs are very much like JavaScript functions. In Javascript, I can do arguments[someIndex]. Is there a ruby version of this?
my_proc = Proc.new { |a| p a } #This captures the first argument but not the second
my_proc.call(42,43)
#Can I still access the second argument without capturing it (|a,b|) (with something some kind of a ruby equivalent to `arguments[1]` or doing anything within the pipes)?
(Why I'm asking: I've written myself a strace-based dependency-tracking sh replacement for rake and if I am to use it in a Rake task, it needs to know what task to assign the discovered dependencies to. In other words, it needs access to the first argument to the task block in which it is invoked, but I don't want it to depend on the first argument always being captured in a particular way.)

Ruby does not have an equivalent to Javascripts arguments accessor. As #mudasobwa noted, you will have to use the splat operator in order to "soak" up all remaining arguments, if you wish to access them at a later time:
my_proc = Proc.new { |expected_arg1, expected_arg2, *rest| p expected_arg1 }
Use a double-splat when using keyword arguments:
my_proc = Proc.new { |expected_arg1:, **rest| p expected_arg1 }

Related

why pass block arguments to a function in ruby?

I'm unclear on why there is a need to pass block arguments when calling a function.
why not just pass in as function arguments and what happens to the block arguments, how are they passed and used?
m.call(somevalue) {|_k, v| v['abc'] = 'xyz'}
module m
def call ( arg1, *arg2, &arg3)
end
end
Ruby, like almost all mainstream programming languages, is a strict language, meaning that arguments are fully evaluated before being passed into the method.
Now, imagine you want to implement (a simplified version of) Integer#times. The implementation would look a little bit like this:
class Integer
def my_times(action_to_be_executed)
raise ArgumentError, "`self` must be non-negative but is `#{inspect}`" if negative?
return if zero?
action_to_be_executed
pred.my_times(action_to_be_executed)
end
end
3.my_times(puts "Hello")
# Hello
0.my_times(puts "Hello")
# Hello
-1.my_times(puts "Hello")
# Hello
# ArgumentError (`self` must be non-negative but is `-1`)
As you can see, 3.my_times(puts "Hello") printed Hello exactly once, instead of thrice, as it should do. Also, 0.my_times(puts "Hello") printed Hello exactly once, instead of not at all, as it should do, despite the fact that it returns in the second line of the method, and thus action_to_be_executed is never even evaluated. Even -1.my_times(puts "Hello") printed Hello exactly once, despite that fact that it raises an ArgumentError exception as the very first thing in the method and thus the entire rest of the method body is never evaluated.
Why is that? Because Ruby is strict! Again, strict means that arguments are fully evaluated before being passed. So, what this means is that before my_times even gets called, the puts "Hello" is evaluated (which prints Hello to the standard output stream), and the result of that evaluation (which is just nil because Kernel#puts always returns nil) is passed into the method.
So, what we need to do, is somehow delay the evaluation of the argument. One way we know how to delay evaluation, is by using a method: methods are only evaluated when they are called.
So, we take a page out of Java's playbook, and define a Single Abstract Method Protocol: the argument that is being passed to my_each must be an object which implements a method with a specific name. Let's call it call, because, well, we are going to call it.
This would look a little bit like this:
class Integer
def my_times(action_to_be_executed)
raise ArgumentError, "`self` must be non-negative but is `#{inspect}`" if negative?
return if zero?
action_to_be_executed.call
pred.my_times(action_to_be_executed)
end
end
def (hello = Object.new).call
puts "Hello"
end
3.my_times(hello)
# Hello
# Hello
# Hello
0.my_times(hello)
-1.my_times(hello)
# ArgumentError (`self` must be non-negative but is `-1`)
Nice! It works! The argument that is passed is of course still strictly evaluated before being passed (we can't change the fundamental nature of Ruby from within Ruby itself), but this evaluation only results in the object that is bound by the local variable hello. The code that we want to run is another layer of indirection away and will only be executed at the point where we actually call it.
It also has another advantage: Integer#times actually makes the index of the current iteration available to the action as an argument. This was impossible to implement with our first solution, but here we can do it, because we are using a method and methods can take arguments:
class Integer
def my_times(action_to_be_executed)
raise ArgumentError, "`self` must be non-negative but is `#{inspect}`" if negative?
__my_times_helper(action_to_be_executed)
end
protected
def __my_times_helper(action_to_be_executed, index = 0)
return if zero?
action_to_be_executed.call(index)
pred.__my_times_helper(action_to_be_executed, index + 1)
end
end
def (hello = Object.new).call(i)
puts "Hello from iteration #{i}"
end
3.my_times(hello)
# Hello from iteration 0
# Hello from iteration 1
# Hello from iteration 2
0.my_times(hello)
-1.my_times(hello)
# ArgumentError (`self` must be non-negative but is `-1`)
However, this is not actually very readable. If you didn't want to give a name to this action that we are trying to pass but instead simply literally write it down inside the argument list, it would look something like this:
3.my_times(Object.new.tap do |obj|
def obj.call(i)
puts "Hello from iteration #{i}"
end
end)
# Hello from iteration 0
# Hello from iteration 1
# Hello from iteration 2
or on one line:
3.my_times(Object.new.tap do |obj| def obj.call; puts "Hello from iteration #{i}" end end)
# Hello from iteration 0
# Hello from iteration 1
# Hello from iteration 2
# or:
3.my_times(Object.new.tap {|obj| def obj.call; puts "Hello from iteration #{i}" end })
# Hello from iteration 0
# Hello from iteration 1
# Hello from iteration 2
Now, I don't know about you, but I find that pretty ugly.
In Ruby 1.9, Ruby added Proc literals aka stabby lambda literals to the language. Lambda literals are a concise literal syntax for writing objects with a call method, specifically Proc objects with Proc#call.
Using lambda literals, and without any changes to our existing code, it looks something like this:
3.my_times(-> i { puts "Hello from iteration #{i}" })
# Hello from iteration 0
# Hello from iteration 1
# Hello from iteration 2
This does not look bad!
When Yukihiro "matz" Matsumoto designed Ruby almost thirty years ago in early 1993, he did a survey of the core libraries and standard libraries of languages like Smalltalk, Scheme, and Common Lisp to figure out how such methods that take a piece of code as an argument are actually used, and he found that the overwhelming majority of such methods take exactly one code argument and all they do with that argument is call it.
So, he decided to add special language support for a single argument that contains code and can only be called. This argument is both syntactically and semantically lightweight, in particular, it looks syntactically exactly like any other control structure, and it is semantically not an object.
This special language feature, you probably guessed it, are blocks.
Every method in Ruby has an optional block parameter. I can always pass a block to a method. It's up to the method to do anything with the block. Here, for example, the block is useless because Kernel#puts doesn't do anything with a block:
puts("Hello") { puts "from the block" }
# Hello
Because blocks are not objects, you cannot call methods on them. Also, because there can be only one block argument, there is no need to give it a name: if you refer to a block, it's always clear which block because there can be only one. But, if the block doesn't have methods and doesn't have a name, how can we call it?
That's what the yield keyword is for. It temporarily "yields" control flow to the block, or, in other words, it calls the block.
With blocks, our solution would look like this:
class Integer
def my_times(&action_to_be_executed)
raise ArgumentError, "`self` must be non-negative but is `#{inspect}`" if negative?
return enum_for(__callee__) unless block_given?
__my_times_helper(&action_to_be_executed)
end
protected
def __my_times_helper(&action_to_be_executed, index = 0)
return if zero?
yield index
pred.__my_times_helper(&action_to_be_executed, index + 1)
end
end
3.my_times do
puts "Hello from iteration #{i}"
end
# Hello from iteration 0
# Hello from iteration 1
# Hello from iteration 2
0.my_times do
puts "Hello from iteration #{i}"
end
-1.my_times do
puts "Hello from iteration #{i}"
end
# ArgumentError (`self` must be non-negative but is `-1`)
Okay, you might notice that I simplified a bit when I wrote above that the only thing you can do with a block is call it. There are two other things you can do with it:
You can check whether a block argument was passed using Kernel#block_given?. Since blocks are always optional, and blocks have no names, there must be a way to check whether a block was passed or not.
You can "roll up" a block (which is not an object and doesn't have a name) into a Proc object (which is an object) and bind it to a parameter (which gives it a name) using the & ampersand unary prefix sigil in the parameter list of the method. Now that we have an object, and a way to refer to it, we can store it in a variable, return it from a method, or (as we are doing here) pass it along as an argument to a different method, which otherwise wouldn't be possible.
There is also the opposite operation: with the & ampersand unary prefix operator, you can "unroll" a Proc object into a block in an argument list; this makes it so that the method behaves as if you had passed the code that is stored inside the Proc as a literal block argument to the method.
And there you have it! That's what blocks are for: a semantically and syntactically lightweight form of passing code to a method.
There are other possible approaches, of course. The approach that is closest to Ruby is probably Smalltalk. Smalltalk also has a concept called blocks (in fact, that is where Ruby got both the idea and the name from). Similarly to Ruby, Smalltalk blocks have a syntactically light-weight literal form, but they are objects, and you can pass more than one to a method. Thanks to Smalltalk's generally light-weight and simple syntax, especially the keyword method syntax which intersperses parts of the method name with the arguments, even passing multiple blocks to a method call is very concise and readable.
For example, Smalltalk actually does not have an if / then / else conditional expression, in fact, Smalltalk has no control structures at all. Everything is done with methods. So, the way that a conditional works, is that the two boolean classes TrueClass and FalseClass each have a method named ifTrue:ifFalse: which takes two block arguments, and the two implementations will simply either evaluate the first or the second block. For example, the implementation in TrueClass might look a little bit like this (note that Smalltalk has no syntax for classes or methods, instead classes and methods are created in the IDE by creating class objects and method objects via the GUI):
True>>ifTrue: trueBlock ifFalse: falseBlock
"Answer with the value of `trueBlock`."
↑trueBlock value
The corresponding implementation in FalseClass would then look like this:
FalseClass>>ifTrue: trueBlock ifFalse: falseBlock
"Answer with the value of `falseBlock`."
↑falseBlock value
And you would call it like this:
2 < 3 ifTrue: [ Transcript show: 'yes' ] ifFalse: [ Transcript show: 'no' ].
"yes"
4 < 3 ifTrue: [ Transcript show: 'yes' ] ifFalse: [ Transcript show: 'no' ].
"no"
In ECMAScript, you can simply use function definitions as expressions, and there is also lightweight syntax for functions.
In the various Lisps, code is just data, and data is code, so you can just pass the code as an argument as data, then inside the function, treat that data as code again.
Scala has call-by-name parameters which are only evaluated when you use their name, and they are evaluated every time you use their name. It would look something like this:
implicit class IntegerTimes(val i: Int) extends AnyVal {
#scala.annotation.tailrec
def times(actionToBeExecuted: => Unit): Unit = {
if (i < 0) throw new Error()
if (i == 0) () else { actionToBeExecuted; (i - 1).times(actionToBeExecuted) }
}
}
3.times { println("Hello") }
// Hello
// Hello
// Hello

ruby, two ways how to pass params to proc

I looked through this code and found author passes params to block using []. I tryed it myself
my_proc = proc { |x| x + 1 }
a = 0
my_proc[a] # => 1
my_proc.call(a) # => 1
What is the difference between this two calls? Is this a syntax sugar?
Both ways are exactly the same and are aliases to each other. Thus, both variants call the same method which is not determined by any special syntax. It is basically defined as:
class Proc
def call(*args)
#...
end
alias [] call
end
You might be interested to note that there is even a third way:
my_proc.(a)
This is actually syntactic sugar (i.e. is an extension of the syntax of the Ruby language language). All objects accepting #call can be "called" that way and Ruby ensures to invoke the call method.
They are functionally identical. You can use whichever style you prefer.

How `[]` works with lambdas

I have this lambda (or is closure the correct usage?) and I understand the usage of .call
def multi(m)
lambda { |n| n * m }
end
two = multi(2)
two.call(10) #=> 20 #call the proc
But I am trying to understand why/how this works?
two.(20) #=> 40
two[20] #=> 40
I don't know whether it should or shouldn't work. Most of the time I have used square brackets with arrays.
The documentation
prc[params,...] → obj
Invokes the block, setting the block’s parameters to the values in params using something close to method calling semantics. Generates a warning if multiple values are passed to a proc that expects just one (previously this silently converted the parameters to an array). Note that prc.() invokes prc.call() with the parameters given. It’s a syntax sugar to hide “call”.
For procs created using lambda or ->() an error is generated if the wrong number of parameters are passed to a Proc with multiple parameters. For procs created using Proc.new or Kernel.proc, extra parameters are silently discarded.
For your first question, proc.() is a hack because Ruby doesn't let you define () on an object. It's just syntaxic sugar for proc.call().
For your second question, using square brackets on a Proc calls it.

Omitting an argument for a method in a block

I wonder, is it possible to do something similar in Ruby to what I can do in Scala or other languages:
someCollection.foreach(x => println(x)) // a full version
someCollection.foreach(println) // a short version
In Ruby I can do:
some_array.each { |x| puts x }
So how can I do this?
some_array.each { puts }
UPDATE:
I'm not talking about puts in particular, it just picked it for example. There might be some_other_method which takes one parameter.
some_array.map { some_other_method }
some_array.map(some_other_method) # ???
def some_other_method a
# ... doing something with a
end
If you look up the rules for implicit η-expansion in the SLS (§6.26.5), it should be immediately obvious that it relies crucially on static type information and thus cannot possibly work in Ruby.
You can, however, explicitly obtain a Method object via reflection. Method objects respond to to_proc and like any object that responds to to_proc can thus be passed as if they were blocks using the unary prefix & operator:
some_array.each(&method(:puts))
Not quite like that, unfortunately. You can send a method name to be called on each object, e.g.:
some_array.each &:print_myself
Which is equivalent to:
some_array.each {|x| x.print_myself}
But I don't know of a clean (read: built-in) way to do what you're asking for. (Edit: #Jörg's answer does this, though it doesn't really save you any typing. There is no automatic partial function application in Ruby)

translating blocks and statements for a DSL

I want to write a simple Ruby DSL to translate some statements and expressions into another language. A basic example would be:
some_function {
t + 2
}
Here, t is not a ruby variable and thus the block can't (and must not!) be evaluated by Ruby. So my best bet would be to use the parsing output (or AST) to do the translation myself. To do so, I can use ParseTree and ruby2ruby. However, I have other constructs that I would like to use, for example:
1.upto(10) {|x|
some_function {
t + x
}
}
Here, I have a local variable and I need to get its value in order to do my translation. However, in the function that does the block evaluation, I don't have access to the local variables of the calling block. If it were a global variable ($x), I could check if its name exists in the global_variables array and in the worst case use eval, but how could I do so for a local variable, if possible at all?
Update:
Just to clear up things. Like I said originally, I'm using ruby2ruby (and hence ParseTree) to get the AST (using to_sexp) corresponding to the block. But when using a local variable inside my block, I encounter the following:
[:dvar, :x]
And thus, I would need to get the value of a variable from its name as a string/symbol. And I can't use method_missing or instance_eval, because I want to translate the whole expression to another language or syntax (like a RPN).
Another solution not based on ParseTree would be welcome nonetheless, since it apparently is not fully supported with Ruby 1.9.
To get the variable values, use the proc's binding:
def some_function(&block)
b = block.binding
p [b.eval("t"), b.eval("x")]
end
t = 1
1.upto(10) {|x|
some_function {
t + x
}
}
Here, t is not a ruby variable and
thus the block can't (and must not!)
be evaluated by Ruby.
Any reason for the "not evaluated" restriction? It seems like method_missing would elegantly handle evaluating the "missing" t variable, but Ruby would automatically dereference the x variable.
You can use instance_eval against an object with t.
class Context
attr_accessor :t
def initialize(_t)
#t = _t
end
end
def some_function(&block)
puts Context.new(1).instance_eval(&block)
end
1.upto(10) {|x|
some_function {
t + x
}
}

Resources