I got a big unbalanced classification problem and want to address this issue by oversampling the minor classes. (N(class 1) = 8,5mio, N(class n) = 3000)
For that purpose I want to get 100.000 sample for each of the n classes by
data_oversampled = []
for data_class_filtered in data:
data_oversampled.append(data_class_filtered.sample(n=20000, replace=True))
where data is a list of class specific DataFrames and len(data)=10, data.shape=(9448788,97)
That works as expected but unfortunately takes literally forever. Is there a more efficient way to do the same thing?
The problem happened when I try to keep my cached result in a List and try to calculate new DataFrame by all the data from the last list in each iteration. However, Even I use an empty DataFrame and get an empty result each time, the function will suddenly get very slow after about 8~12 round.
Here is my code
testLoop(Nil)
def testLoop(lastDfList:List[DataFrame]){
// do some dummy transformation like union and cache the result
val resultDf = lastDfList.foldLeft(Seq[Data]().toDF){(df, lastDf) => df.union(lastDf)}.cache
// always get 0, of course
println(resultDf.count)
// benchmark action
benchmark(resultDf.count)
testLoop(resultDf::lastDfList)
}
the benchmark result
1~6 round : < 200ms
7 round : 367ms
8 round : 918ms
9 round : 2476ms
10 round : 7833ms
11 round : 24231ms
I don't think GC or Block eviction is the problem in my case since I already use an empty DataFrame, but I don't know what is the cause? Do I misunderstand the meaning of cache or something?
Thanks!
After reading ImDarrenG's solution, I changed my code to be the following:
spark.sparkContext.setCheckpointDir("/tmp")
testLoop(Nil)
def testLoop(lastDfList:List[DataFrame]){
// do some dummy transformation like union and cache the result
val resultDf = lastDfList.foldLeft(Seq[Data]().toDF){(df, lastDf) => df.union(lastDf)}.cache
resultDf.checkpoint()
// always get 0, of course
println(resultDf.count)
// benchmark action
benchmark(resultDf.count)
testLoop(resultDf::lastDfList)
}
But it still become very slow after a few iterations.
Here you create a list of DataFrames by adding resultDf to the beginning of lastDfList and pass that to the next iteration of testLoop:
testLoop(resultDf::lastDfList)
So lastDfList gets longer each pass.
This line creates a new DataFrame by unioning each member of lastDfList:
val resultDf = lastDfList.foldLeft(Seq[Data]().toDF){(df, lastDf) => df.union(lastDf))}.cache
Each member of lastDfList is a union of it's predecessors, therefore, Spark is maintaining a lineage that becomes exponentially larger with each pass of testLoop.
I expect that the increase in time is caused by the housekeeping of the DAG. Caching the dataframes removes the need to repeat transformations, but the lineage must still be maintained by spark.
Cached data or no, it looks like you are building a really complex DAG by unioning each DataFrame with all of it's predecessors with each pass of testLoop.
You could use checkpoint to trim the lineage, and introduce some check to prevent infinite recursion.
According to API and code, checkpoint will return a new Dataset instead of changing original Dataset.
So I'm trying to iterate over the list of partitions of something, say 1:n for some n between 13 and 21. The code that I ideally want to run looks something like this:
valid_num = #parallel (+) for p in partitions(1:n)
int(is_valid(p))
end
println(valid_num)
This would use the #parallel for to map-reduce my problem. For example, compare this to the example in the Julia documentation:
nheads = #parallel (+) for i=1:200000000
Int(rand(Bool))
end
However, if I try my adaptation of the loop, I get the following error:
ERROR: `getindex` has no method matching getindex(::SetPartitions{UnitRange{Int64}}, ::Int64)
in anonymous at no file:1433
in anonymous at multi.jl:1279
in run_work_thunk at multi.jl:621
in run_work_thunk at multi.jl:630
in anonymous at task.jl:6
which I think is because I am trying to iterate over something that is not of the form 1:n (EDIT: I think it's because you cannot call p[3] if p=partitions(1:n)).
I've tried using pmap to solve this, but because the number of partitions can get really big, really quickly (there are more than 2.5 million partitions of 1:13, and when I get to 1:21 things will be huge), constructing such a large array becomes an issue. I left it running over night and it still didn't finish.
Does anyone have any advice for how I can efficiently do this in Julia? I have access to a ~30 core computer and my task seems easily parallelizable, so I would be really grateful if anyone knows a good way to do this in Julia.
Thank you so much!
The below code gives 511, the number of partitions of size 2 of a set of 10.
using Iterators
s = [1,2,3,4,5,6,7,8,9,10]
is_valid(p) = length(p)==2
valid_num = #parallel (+) for i = 1:30
sum(map(is_valid, takenth(chain(1:29,drop(partitions(s), i-1)), 30)))
end
This solution combines the takenth, drop, and chain iterators to get the same effect as the take_every iterator below under PREVIOUS ANSWER. Note that in this solution, every process must compute every partition. However, because each process uses a different argument to drop, no two processes will ever call is_valid on the same partition.
Unless you want to do a lot of math to figure out how to actually skip partitions, there is no way to avoid computing partitions sequentially on at least one process. I think Simon's answer does this on one process and distributes the partitions. Mine asks each worker process to compute the partitions itself, which means the computation is being duplicated. However, it is being duplicated in parallel, which (if you actually have 30 processors) will not cost you time.
Here is a resource on how iterators over partitions are actually computed: http://www.informatik.uni-ulm.de/ni/Lehre/WS03/DMM/Software/partitions.pdf.
PREVIOUS ANSWER (More complicated than necessary)
I noticed Simon's answer while writing mine. Our solutions seem similar to me, except mine uses iterators to avoid storing partitions in memory. I'm not sure which would actually be faster for what size sets, but I figure it's good to have both options. Assuming it takes you significantly longer to compute is_valid than to compute the partitions themselves, you can do something like this:
s = [1,2,3,4]
is_valid(p) = length(p)==2
valid_num = #parallel (+) for i = 1:30
foldl((x,y)->(x + int(is_valid(y))), 0, take_every(partitions(s), i-1, 30))
end
which gives me 7, the number of partitions of size 2 for a set of 4. The take_every function returns an iterator that returns every 30th partition starting with the ith. Here is the code for that:
import Base: start, done, next
immutable TakeEvery{Itr}
itr::Itr
start::Any
value::Any
flag::Bool
skip::Int64
end
function take_every(itr, offset, skip)
value, state = Nothing, start(itr)
for i = 1:(offset+1)
if done(itr, state)
return TakeEvery(itr, state, value, false, skip)
end
value, state = next(itr, state)
end
if done(itr, state)
TakeEvery(itr, state, value, true, skip)
else
TakeEvery(itr, state, value, false, skip)
end
end
function start{Itr}(itr::TakeEvery{Itr})
itr.value, itr.start, itr.flag
end
function next{Itr}(itr::TakeEvery{Itr}, state)
value, state_, flag = state
for i=1:itr.skip
if done(itr.itr, state_)
return state[1], (value, state_, false)
end
value, state_ = next(itr.itr, state_)
end
if done(itr.itr, state_)
state[1], (value, state_, !flag)
else
state[1], (value, state_, false)
end
end
function done{Itr}(itr::TakeEvery{Itr}, state)
done(itr.itr, state[2]) && !state[3]
end
One approach would be to divide the problem up into pieces that are not too big to realize and then process the items within each piece in parallel, e.g. as follows:
function my_take(iter,state,n)
i = n
arr = Array[]
while !done(iter,state) && (i>0)
a,state = next(iter,state)
push!(arr,a)
i = i-1
end
return arr, state
end
function get_part(npart,npar)
valid_num = 0
p = partitions(1:npart)
s = start(p)
while !done(p,s)
arr,s = my_take(p,s,npar)
valid_num += #parallel (+) for a in arr
length(a)
end
end
return valid_num
end
valid_num = #time get_part(10,30)
I was going to use the take() method to realize up to npar items from the iterator but take() appears to be deprecated so I've included my own implementation which I've called my_take(). The getPart() function therefore uses my_take() to obtain up to npar partitions at a time and carry out a calculation on them. In this case, the calculation just adds up their lengths, because I don't have the code for the OP's is_valid() function. get_part() then returns the result.
Because the length() calculation isn't very time-consuming, this code is actually slower when run on parallel processors than it is on a single processor:
$ julia -p 1 parpart.jl
elapsed time: 10.708567515 seconds (373025568 bytes allocated, 6.79% gc time)
$ julia -p 2 parpart.jl
elapsed time: 15.70633439 seconds (548394872 bytes allocated, 9.14% gc time)
Alternatively, pmap() could be used on each piece of the problem instead of the parallel for loop.
With respect to the memory issue, realizing 30 items from partitions(1:10) took nearly 1 gigabyte of memory on my PC when I ran Julia with 4 worker processes so I expect realizing even a small subset of partitions(1:21) will require a great deal of memory. It may be desirable to estimate how much memory would be needed to see if it would be at all possible before trying such a computation.
With respect to the computation time, note that:
julia> length(partitions(1:10))
115975
julia> length(partitions(1:21))
474869816156751
... so even efficient parallel processing on 30 cores might not be enough to make the larger problem solvable in a reasonable time.
I have a large vector of vectors of strings:
There are around 50,000 vectors of strings,
each of which contains 2-15 strings of length 1-20 characters.
MyScoringOperation is a function which operates on a vector of strings (the datum) and returns an array of 10100 scores (as Float64s). It takes about 0.01 seconds to run MyScoringOperation (depending on the length of the datum)
function MyScoringOperation(state:State, datum::Vector{String})
...
score::Vector{Float64} #Size of score = 10000
I have what amounts to a nested loop.
The outer loop typically would runs for 500 iterations
data::Vector{Vector{String}} = loaddata()
for ii in 1:500
score_total = zeros(10100)
for datum in data
score_total+=MyScoringOperation(datum)
end
end
On one computer, on a small test case of 3000 (rather than 50,000) this takes 100-300 seconds per outer loop.
I have 3 powerful servers with Julia 3.9 installed (and can get 3 more easily, and then can get hundreds more at the next scale).
I have basic experience with #parallel, however it seems like it is spending a lot of time copying the constant (It more or less hang on the smaller testing case)
That looks like:
data::Vector{Vector{String}} = loaddata()
state = init_state()
for ii in 1:500
score_total = #parallel(+) for datum in data
MyScoringOperation(state, datum)
end
state = update(state, score_total)
end
My understanding of the way this implementation works with #parallel is that it:
For Each ii:
partitions data into a chuck for each worker
sends that chuck to each worker
works all process there chunks
main procedure sums the results as they arrive.
I would like to remove step 2,
so that instead of sending a chunk of data to each worker,
I just send a range of indexes to each worker, and they look it up from their own copy of data. or even better, only giving each only their own chunk, and having them reuse it each time (saving on a lot of RAM).
Profiling backs up my belief about the functioning of #parellel.
For a similarly scoped problem (with even smaller data),
the non-parallel version runs in 0.09seconds,
and the parallel runs in
And the profiler shows almost all the time is spent 185 seconds.
Profiler shows almost 100% of this is spend interacting with network IO.
This should get you started:
function get_chunks(data::Vector, nchunks::Int)
base_len, remainder = divrem(length(data),nchunks)
chunk_len = fill(base_len,nchunks)
chunk_len[1:remainder]+=1 #remained will always be less than nchunks
function _it()
for ii in 1:nchunks
chunk_start = sum(chunk_len[1:ii-1])+1
chunk_end = chunk_start + chunk_len[ii] -1
chunk = data[chunk_start: chunk_end]
produce(chunk)
end
end
Task(_it)
end
function r_chunk_data(data::Vector)
all_chuncks = get_chunks(data, nworkers()) |> collect;
remote_chunks = [put!(RemoteRef(pid)::RemoteRef, all_chuncks[ii]) for (ii,pid) in enumerate(workers())]
#Have to add the type annotation sas otherwise it thinks that, RemoteRef(pid) might return a RemoteValue
end
function fetch_reduce(red_acc::Function, rem_results::Vector{RemoteRef})
total = nothing
#TODO: consider strongly wrapping total in a lock, when in 0.4, so that it is garenteed safe
#sync for rr in rem_results
function gather(rr)
res=fetch(rr)
if total===nothing
total=res
else
total=red_acc(total,res)
end
end
#async gather(rr)
end
total
end
function prechunked_mapreduce(r_chunks::Vector{RemoteRef}, map_fun::Function, red_acc::Function)
rem_results = map(r_chunks) do rchunk
function do_mapred()
#assert r_chunk.where==myid()
#pipe r_chunk |> fetch |> map(map_fun,_) |> reduce(red_acc, _)
end
remotecall(r_chunk.where,do_mapred)
end
#pipe rem_results|> convert(Vector{RemoteRef},_) |> fetch_reduce(red_acc, _)
end
rchunk_data breaks the data into chunks, (defined by get_chunks method) and sends those chunks each to a different worker, where they are stored in RemoteRefs.
The RemoteRefs are references to memory on your other proccesses(and potentially computers), that
prechunked_map_reduce does a variation on a kind of map reduce to have each worker first run map_fun on each of it's chucks elements, then reduce over all the elements in its chuck using red_acc (a reduction accumulator function). Finally each worker returns there result which is then combined by reducing them all together using red_acc this time using the fetch_reduce so that we can add the first ones completed first.
fetch_reduce is a nonblocking fetch and reduce operation. I believe it has no raceconditions, though this maybe because of a implementation detail in #async and #sync. When julia 0.4 comes out, it is easy enough to put a lock in to make it obviously have no race conditions.
This code isn't really battle hardened. I don;t believe the
You also might want to look at making the chuck size tunable, so that you can seen more data to faster workers (if some have better network or faster cpus)
You need to reexpress your code as a map-reduce problem, which doesn't look too hard.
Testing that with:
data = [float([eye(100),eye(100)])[:] for _ in 1:3000] #480Mb
chunk_data(:data, data)
#time prechunked_mapreduce(:data, mean, (+))
Took ~0.03 seconds, when distributed across 8 workers (none of them on the same machine as the launcher)
vs running just locally:
#time reduce(+,map(mean,data))
took ~0.06 seconds.
When there is a collection and you must perform two or more operations on all of its elements, what is faster?:
val f1: String => String = _.reverse
val f2: String => String = _.toUpperCase
val elements: Seq[String] = List("a", "b", "c")
iterate multiple times and perform one operation on one loop
val result = elements.map(f1).map(f2)
This approach does have the advantage, that the result after application of the first function could be reused.
iterate one time and perform all operation on each element together
val result = elements.map(element => f2(f1(element)))
or
val result = elements.map(element => f1.compose(f2)
Is there any difference in performance between these two approaches? And if yes, which is faster?
Here's the thing, transformation of a collection is more or less of runtime O(N) , * runtime cost of all the functions applied. So I doubt the 2nd set of choices you present above would make even the slightest difference in runtime. The first option you list, is a different story. New collection creation can be avoided, because that could result in overhead. That's where "view" collections come in (see this good example I spotted)
In Scala, what does "view" do?
If you had the apply several mapping operations you might do this:
val result = elements.view.map(f1).map(f2).force
(force at the end, causes all functions to evaluate)
The 2nd set of examples above would maybe be a tiny bit faster, but the "view" option could make your code more readable if you had a lot of these or complex anonymous functions used in the mapping.
Composing functions to produce a single pass transformation will probably gain you some performance, but will quickly become unreadable. Consider using views as an alernative. While this will create intermediate collections:
val result = elements.map(f1).map(f2)
This will perform lazy evaluation and will perform functional composition the same way you do:
val result = elements.view.map(f1).map(f2)
Notice that result type will be SeqView so you might want to convert it to list later with toList.