Setup elastic for production - production-environment

I want to know what configuration setup would be ideal for my case. I have 4 servers (nodes) each with 128 GB RAM. I'll have all 4 nodes under one cluster.
Total number number of indexes would be 10, each getting data of 1500000 documents per day.
Since I'll have 4 servers (nodes) so for all these nodes I'll set master:true, and data:true, so that if one node goes down, other becomes master. Every index will have 5 shards.
I want to know which config parameters should I alter in order to gain maximum potential from elastic.
Also tell me how much memory is enough for my usage, since I'll have very frequent select queries in production (may be 1000 requests per second).
Need a detailed suggestion.s

I'm not sure anyone can give you a definitive answer to exactly how to configure your servers since it is very dependent on your data structure, mapping and specific queries.
You should read this great article series by Elastic regarding production environments

Related

Creating high throughput Elasticsearch cluster

We are in process of implementing Elasticsearch as a search solution in our organization. For the POC we implemented a 3-Node cluster ( each node with 16 VCores and 60 GB RAM and 6 * 375GB SSDs) with all the nodes acting as master, data and co-ordination node. As it was a POC indexing speeds were not a consideration we were just trying to see if it will work or not.
Note : We did try to index 20 million documents on our POC cluster and it took about 23-24 hours to do that which is pushing us to take time and design the production cluster with proper sizing and settings.
Now we are trying to implement a production cluster (in Google Cloud Platform) with emphasis on both indexing speed and search speed.
Our use case is as follows :
We will bulk index 7 million to 20 million documents per index ( we have 1 index for each client and there will be only one cluster). This bulk index is a weekly process i.e. we'll index all data once and will query it for whole week before refreshing it.We are aiming for a 0.5 million document per second indexing throughput.
We are also looking for a strategy to horizontally scale when we add more clients. I have mentioned the strategy in subsequent sections.
Our data model has nested document structure and lot of queries on nested documents which according to me are CPU, Memory and IO intensive. We are aiming for sub second query times for 95th percentile of queries.
I have done quite a bit of reading around this forum and other blogs where companies have high performing Elasticsearch clusters running successfully.
Following are my learnings :
Have dedicated master nodes (always odd number to avoid split-brain). These machines can be medium sized ( 16 vCores and 60 Gigs ram) .
Give 50% of RAM to ES Heap with an exception of not exceeding heap size above 31 GB to avoid 32 bit pointers. We are planning to set it to 28GB on each node.
Data nodes are the workhorses of the cluster hence have to be high on CPUs, RAM and IO. We are planning to have (64 VCores, 240 Gb RAM and 6 * 375 GB SSDs).
Have co-ordination nodes as well to take bulk index and search requests.
Now we are planning to begin with following configuration:
3 Masters - 16Vcores, 60GB RAM and 1 X 375 GB SSD
3 Cordinators - 64Vcores, 60GB RAM and 1 X 375 GB SSD (Compute Intensive machines)
6 Data Nodes - 64 VCores, 240 Gb RAM and 6 * 375 GB SSDs
We have a plan to adding 1 Data Node for each incoming client.
Now since hardware is out of windows, lets focus on indexing strategy.
Few best practices that I've collated are as follows :
Lower number of shards per node is good of most number of scenarios, but have good data distribution across all the nodes for a load balanced situation. Since we are planning to have 6 data nodes to start with, I'm inclined to have 6 shards for the first client to utilize the cluster fully.
Have 1 replication to survive loss of nodes.
Next is bulk indexing process. We have a full fledged spark installation and are going to use elasticsearch-hadoop connector to push data from Spark to our cluster.
During indexing we set the refresh_interval to 1m to make sure that there are less frequent refreshes.
We are using 100 parallel Spark tasks which each task sending 2MB data for bulk request. So at a time there is 2 * 100 = 200 MB of bulk requests which I believe is well within what ES can handle. We can definitely alter these settings based on feedback or trial and error.
I've read more about setting cache percentage, thread pool size and queue size settings, but we are planning to keep them to smart defaults for beginning.
We are open to use both Concurrent CMS or G1GC algorithms for GC but would need advice on this. I've read pros and cons for using both and in dilemma in which one to use.
Now to my actual questions :
Is sending bulk indexing requests to coordinator node a good design choice or should we send it directly to data nodes ?
We will be sending query requests via coordinator nodes. Now my question is, lets say since my data node has 64 cores, each node has thread pool size of 64 and 200 queue size. Lets assume that during search data node thread pool and queue size is completely exhausted then will the coordinator nodes keep accepting and buffering search requests at their end till their queue also fill up ? Or will 1 thread on coordinator will also be blocked per each query request ?
Say a search request come up to coordinator node it blocks 1 thread there and send request to data nodes which in turn blocks threads on data nodes as per where query data is lying. Is this assumption correct ?
While bulk indexing is going on ( assuming that we do not run indexing for all the clients in parallel and schedule them to be sequential) how to best design to make sure that query times do not take much hit during this bulk index.
References
https://thoughts.t37.net/designing-the-perfect-elasticsearch-cluster-the-almost-definitive-guide-e614eabc1a87
https://thoughts.t37.net/how-we-reindexed-36-billions-documents-in-5-days-within-the-same-elasticsearch-cluster-cd9c054d1db8
https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html
We did try to index 20 million documents on our POC cluster and it took about 23-24 hours
That is surprisingly little — like less than 250 docs/s. I think my 8GB RAM laptop can insert 13 million docs in 2h. Either you have very complex documents, some bad settings, or your bottleneck is on the ingestion side.
About your nodes: I think you could easily get away with less memory on the master nodes (like 32GB should be plenty). Also the memory on data nodes is pretty high; I'd normally expect heap in relation to the rest of the memory to be 1:1 or for lots of "hot" data maybe 1:3. Not sure you'll get the most out of that 1:7.5 ratio.
CMS vs G1GC: If you have a current Elasticsearch and Java version, both are an option, otherwise CMS. You're generally trading throughput for (GC) latency, so if you benchmark be sure to have a long enough timeframe to properly hit GC phases and run as close to production queries in parallel as possible.
Is sending bulk indexing requests to coordinator node a good design choice or should we send it directly to data nodes ?
I'd say the coordinator is fine. Unless you use a custom routing key and the bulk only contains data for that specific data node, 5/6th of the documents would need to be forwarded to other data nodes anyway (if you have 6 data nodes). And you can offload the bulk processing and coordination handling to non data nodes.
However, overall it might make more sense to have 3 additional data nodes and skip the dedicated coordinating node. Though this is something you can only say for certain by benchmarking your specific scenario.
Now my question is, lets say since my data node has 64 cores, each node has thread pool size of 64 and 200 queue size. Lets assume that during search data node thread pool and queue size is completely exhausted then will the coordinator nodes keep accepting and buffering search requests at their end till their queue also fill up ? Or will 1 thread on coordinator will also be blocked per each query request ?
I'm not sure I understand the question. But have you looked into https://www.elastic.co/blog/why-am-i-seeing-bulk-rejections-in-my-elasticsearch-cluster, which might shed some more light on this topic?
While bulk indexing is going on ( assuming that we do not run indexing for all the clients in parallel and schedule them to be sequential) how to best design to make sure that query times do not take much hit during this bulk index.
While there are different queues for different query operations, there is otherwise no clear separation of tasks (like "only use 20% of the resources for indexing). Maybe go a little more conservative on the parallel bulk requests to avoid overloading the node.
If you are not reading from an index while it's being indexed (ideally you flip an alias once done): You might want to disable the refresh rate entirely and let Elasticsearch create segments as needed, but do a force refresh and change the setting once done. Also you could try running with 0 replicas while indexing, change replicas to 1 once done, and then wait for it to finish — though I'd benchmark if this is helping overall and if it's worth the added complexity.

Examples of 10 million plus Elastic clusters?

Unless I'm missing an obvious list that's provided somewhere, there doesn't seem to be a list that gives examples of large-ish Elastic clusters.
To answer this question I'd appreciate it if you could list a solution you know of and some brief details about it. Note that no organisational details need be shared unless these are already public.
Core info
Number of nodes (machines)
Gb of index size
Gb of source size
Number of documents / items (millions)
When the system was built (year)
Any of the follow information would be appreciated as well:
Node layout / Gb of memory in each node. Number of master nodes (generally smaller), number and layout of data nodes
Ingest and / or query performance (docs per second, queries per second)
Types of CPU - num cores, year of manufacture or actual CPU specifics
Any other relevant information or suggestions of types of additional info to request
And as always - many thanks for this, and I hope it helps all of us !
24 m4.2xlarge for data nodes,
separate masters and monitoring cluster
multiple indices (~30 per day), 1-2Tb of data per day
700-1000M documents per day
It is continiously building, changing, optimizing (since version 1.4)
hundreds of search requests per second, 10-30k documents per second

Is there a limit on the number of indexes that can be created on Elastic Search?

I'm using AWS-provided Elastic Search.
I have a signup page on my website, and on each signup; a new index for the new user gets created (to be used later by his work-group), which means that the number of indexes is continuously growing, (now it reached around 4~5k).
My question is: is there a performance limit on the number of indexes? is it safe (performance-wise) to keep creating new indexes dynamically with each new user?
Note: I haven't used AWS-Elasticsearch, so this answer may vary because they have started using open-distro of Elsticsearch and have forked the main branch. But a lot of principles should be the same. Also, this question doesn't have a definitive answer and it depends on various factors but I hope this answer will help the thought process.
One of the factors is the number of shards and replicas per index as that will contribute to the total number of shards per node. Each shard consumes some memory, so you will have to keep the number of shards limited per node so that they don't exceed maximum recommended 30GB heap space. As per this comment 600 to 1000 should be reasonable and you can scale your cluster according to that.
Also, you have to monitor the number of file descriptors and make sure that doesn't create any bottleneck for nodes to operate.
HTH!
If I'm not mistaken, the only limit is the disk space of your server, but if your index is growing too fast you should think about having more replica servers. I recomend reading this page: Indexing Performance Tips
Indexes themselves have no limit, however shards do, the recommended amount of shards per GB of heap is 20(JVM heap - you can check on kibana stack monitoring tab), this means if you have 5GB of JVM heap, the recommended amount is 100.
Remember that 1 index can take from 1 to x number of shards (1 primary and x secondary), normally people have 1 primary and 1 secondary, if this is you case then you would be able to create 50 indexes with those 5GB of heap

optimize elasticsearch / JVM

I have a website for classified. For this I'm using elasticsearch, postgres and rails on a same ubuntu 14.04 dedicated server, with 256GB of RAM and 20 cores, 40 threads.
I have 10 indexes on elasticsearch, each have default numbers of shards (5). They have between 1000 and 400 000 classifieds depending on which index.
approximately 5000 requests per minute, 2/3 making an elasticsearch request.
according to htop, jvm is using around 500% of CPU
I try different options, I reduce number of shards per index, I also try to change JAVA_OPTS as followed
#JAVA_OPTS="$JAVA_OPTS -XX:+UseParNewGC"
#JAVA_OPTS="$JAVA_OPTS -XX:+UseConcMarkSweepGC"
#JAVA_OPTS="$JAVA_OPTS -XX:CMSInitiatingOccupancyFraction=75"
#JAVA_OPTS="$JAVA_OPTS -XX:+UseCMSInitiatingOccupancyOnly"
JAVA_OPTS="$JAVA_OPTS -XX:+UseG1GC"
but it doesn't seems to change anything.
so to questions :
when you change any setting on elasticsearch, and then restart, should the improvement (if any) be visible immediately or can it arrive a bit later thanks to cache or anything else ?
can any one help me to find good configuration for JVM / elasticsearch so it will not take that many resources
First, it's a horrible idea to run your web server, database and Elasticsearch server all on the same box. Each of these should be given it's own box, at least. In the case of Elasticsearch, it's actually recommended to have at least 3 servers, or nodes. That way you end up with a load balanced cluster that won't run into split-brain issues.
Further, sharding only makes sense in a cluster. If you only have one node, then all the shards reside on the same node. This causes two performance problems. First, you get the hit that sharding always adds. For every query, Elasticsearch must query each shard individually (each is a separate Lucene index). Then, it must combine and process the result from all the shards to produce the final result. That's a not insignificant amount of overhead. Second, because all the shards reside on the same node, you're I/O-locked. The shards have to be queried one at a time instead of all at once. Optimally, you should have one shard per node, however, since you can't create more shards without reindexing, it's common to have a few extra hanging around for future horizontal scaling. In that scenario, the cost of reindexing what could be 100's of gigs of data or more outweighs a little bit of performance bottleneck. However, if you've got 5 shards running one node, that's probably a large part of your performance problems right there.
Finally, and again, with Elasticsearch in particular, swapping is a huge no-no. Most of what makes Elasticsearch efficient is it's cache which all resides in RAM. If swaps occur, it jacks with the cache in sometimes unpredictable ways. As result, it's recommended to turn off swapping completely on the box your node(s) run on, and set Elasticsearch/JVM to have a min and max memory consumption of roughly half the available RAM of the box. That's virtually impossible to achieve if you have other things running on it like a web server or database. Databases in particular aggressively consume RAM in order to increase throughput, which is why those should likewise reside on their own servers.

Elasticsearch Multiple Cluster Search

I just watched Rafal Kuc's presentation and would like to use it for the basis of an Elastic Search Question.
If I added 50 million documents per day to a cluster where each day created a new index (time based data design pattern), eventually in time that would get pretty big. For example sake we'll put the avg document at 15kb.
Now lets say I needed to do that for 10 years. Eventually, I would need to create multiple clusters. Can I create multiple clusters in ES and search them all simultaneously? Could I use an alias for something like this? Or is it not possible?
No, I think a search via the api or your client of choice (Java/Python/etc) is going to be against a single cluster.
Your client could make multiple requests one to each cluster, perhaps if you organized your clusters by years?
In theory a cluster could just grow forever, although at some point I would think the overhead of scattering and gathering a query to N nodes (where N is very very very large) would cause problems.

Resources