Examples of 10 million plus Elastic clusters? - elasticsearch

Unless I'm missing an obvious list that's provided somewhere, there doesn't seem to be a list that gives examples of large-ish Elastic clusters.
To answer this question I'd appreciate it if you could list a solution you know of and some brief details about it. Note that no organisational details need be shared unless these are already public.
Core info
Number of nodes (machines)
Gb of index size
Gb of source size
Number of documents / items (millions)
When the system was built (year)
Any of the follow information would be appreciated as well:
Node layout / Gb of memory in each node. Number of master nodes (generally smaller), number and layout of data nodes
Ingest and / or query performance (docs per second, queries per second)
Types of CPU - num cores, year of manufacture or actual CPU specifics
Any other relevant information or suggestions of types of additional info to request
And as always - many thanks for this, and I hope it helps all of us !

24 m4.2xlarge for data nodes,
separate masters and monitoring cluster
multiple indices (~30 per day), 1-2Tb of data per day
700-1000M documents per day
It is continiously building, changing, optimizing (since version 1.4)
hundreds of search requests per second, 10-30k documents per second

Related

How much is Kibana ILM cost-effective?

I understood that the hot-warm(-cold-frozen-deleted) lifecycle is a great tool, but I haven't found much numerical documentation: one of the few documents that gives examples with numbers (and not just feature descriptions) is this blogpost. In the hot-warm example without roll-up, it seems to me that the main storage optimization is given by the number of replicas:
one day of data = 86.4 GB
7 hot days = one day of data * 7 days * 2 replicas = 1.2 TB
30-7 warm days = one day of data * 23 days * 1 replica = 1.98 TB
There are other resources like this webinar, yet it doesn't distinguish between storage usage and RAM usage. Is there an official document (or third parties experiment/report) that shows if and how much the cold/frozen/"non-searchable snapshot after deletion" phases optimize the storage usage? Or is only about less RAM usage?
There can't be a single "benchmark" here since ILM is just a tool that allows tuning your hardware configuration according to your data usage patterns.
For example, suppose you have heavy indexing and heavy searching across all of your data. In that case, you don't want to reduce your replica count for the old data, and the gain would be primarily due to slightly cheaper "warm" SSD storage. So the difference here would be minimal or none at all if the separation overhead compensates that gain.
An opposite example would be storing logs for compliance purposes (lots of writes but minimal reads, and it's primarily last 24 hrs) - then you probably want to move everything beyond a week or so into the "frozen" tier which uses s3 buckets for storage and is very cheap. Also, those shards don't count towards cluster shard count regarding heap usage and stability. In this case, tiered storage might turn out to be orders of magnitude cheaper than a single-tier cluster.

Resource usage with rolling indices in Elasticsearch

My question is mostly based on the following article:
https://qbox.io/blog/optimizing-elasticsearch-how-many-shards-per-index
The article advises against having multiple shards per node for two reasons:
Each shard is essentially a Lucene index, it consumes file handles, memory, and CPU resources
Each search request will touch a copy of every shard in the index. Contention arises and performance decreases when the shards are competing for the same hardware resources
The article advocates the use of rolling indices for indices that see many writes and fewer reads.
Questions:
Do the problems of resource consumption by Lucene indices arise if the old indices are left open?
Do the problems of contention arise when searching over a large time range involving many indices and hence many shards?
How does searching many small indices compare to searching one large one?
I should mention that in our particular case, there is only one ES node though of course generally applicable answers will be more useful to SO readers.
It's very difficult to spit out general best practices and guidelines when it comes to cluster sizing as it depends on so many factors. If you ask five ES experts, you'll get ten different answers.
After several years of tinkering and fiddling around ES, I've found out that what works best for me is always to start small (one node, how many indices your app needs and one shard per index), load a representative data set (ideally your full data set) and load test to death. Your load testing scenarii should represent the real maximum load you're experiencing (or expecting) in your production environment during peak hours.
Increase the capacity of your cluster (add shard, add nodes, tune knobs, etc) until your load test pass and make sure to increase your capacity by a few more percent in order to allow for future growth. You don't want your production to be fine now, you want it to be fine in a year from now. Of course, it will depend on how fast your data will grow and it's very unlikely that you can predict with 100% certainty what will happen in a year from now. For that reason, as soon as my load test pass, if I expect a large exponential data growth, I usually increase the capacity by 50% more percent, knowing that I will have to revisit my cluster topology within a few month or a year.
So to answer your questions:
Yes, if old indices are left open, they will consume resources.
Yes, the more indices you search, the more resources you will need in order to go through every shard of every index. Be careful with aliases spanning many, many rolling indices (especially on a single node)
This is too broad to answer, as it again depends on the amount of data we're talking about and on what kind of query you're sending, whether it uses aggregation, sorting and/or scripting, etc
Do the problems of resource consumption by Lucene indices arise if the old indices are left open?
Yes.
Do the problems of contention arise when searching over a large time range involving many indices and hence many shards?
Yes.
How does searching many small indices compare to searching one large one?
When ES searches an index it will pick up one copy of each shard (be it replica or primary) and asks that copy to run the query on its own set of data. Searching a shard will use one thread from the search threadpool the node has (the threadpool is per node). One thread basically means one CPU core. If your node has 8 cores then at any given time the node can search concurrently 8 shards.
Imagine you have 100 shards on that node and your query will want to search all of them. ES will initiate the search and all 100 shards will compete for the 8 cores so some shards will have to wait some amount of time (microseconds, milliseconds etc) to get their share of those 8 cores. Having many shards means less documents on each and, thus, potentially a faster response time from each. But then the node that initiated the request needs to gather all the shards' responses and aggregate the final result. So, the response will be ready when the slowest shard finally responds with its set of results.
On the other hand, if you have a big index with very few shards, there is not so much contention for those CPU cores. But the shards having a lot of work to do individually, it can take more time to return back the individual result.
When choosing the number of shards many aspects need to be considered. But, for some rough guidelines yes, 30GB per shard is a good limit. But this won't work for everyone and for every use case and the article fails to mention that. If, for example, your index is using parent/child relationships those 30GB per shard might be too much and the response time of a single shard can be too slow.
You took this out of the context: "The article advises against having multiple shards per node". No, the article advises one to think about the aspects of structuring the indices shards before hand. One important step here is the testing one. Please, test your data before deciding how many shards you need.
You mentioned in the post "rolling indices", and I assume time-based indices. In this case, one question is about the retention period (for how long you need the data). Based on the answer to this question you can determine how many indices you'll have. Knowing how many indices you'll have gives you the total number of shards you'll have.
Also, with rolling indices, you need to take care of deleting the expired indices. Have a look at Curator for this.

Setup elastic for production

I want to know what configuration setup would be ideal for my case. I have 4 servers (nodes) each with 128 GB RAM. I'll have all 4 nodes under one cluster.
Total number number of indexes would be 10, each getting data of 1500000 documents per day.
Since I'll have 4 servers (nodes) so for all these nodes I'll set master:true, and data:true, so that if one node goes down, other becomes master. Every index will have 5 shards.
I want to know which config parameters should I alter in order to gain maximum potential from elastic.
Also tell me how much memory is enough for my usage, since I'll have very frequent select queries in production (may be 1000 requests per second).
Need a detailed suggestion.s
I'm not sure anyone can give you a definitive answer to exactly how to configure your servers since it is very dependent on your data structure, mapping and specific queries.
You should read this great article series by Elastic regarding production environments

Logstash/Elasticsearch/Kibana resource planning

How to plan resources (I suspect, elasticsearch instances) according to load:
With load I mean ≈500K events/min, each containing 8-10 fields.
What are the configuration knobs I should turn?
I'm new to this stack.
500,000 events per minute is 8,333 events per second, which should be pretty easy for a small cluster (3-5 machines) to handle.
The problem will come with keeping 720M daily documents open for 60 days (43B documents). If each of the 10 fields is 32 bytes, that's 13.8TB of disk space (nearly 28TB with a single replica).
For comparison, I have 5 nodes at the max (64GB of RAM, 31GB heap), with 1.2B documents consuming 1.2TB of disk space (double with a replica). This cluster could not handle the load with only 32GB of RAM per machine, but it's happy now with 64GB. This is 10 days of data for us.
Roughly, you're expecting to have 40x the number of documents consuming 10x the disk space than my cluster.
I don't have the exact numbers in front of me, but our pilot project for using doc_values is giving us something like a 90% heap savings.
If all of that math holds, and doc_values is that good, you could be OK with a similar cluster as far as actual bytes indexed were concerned. I would solicit additional information on the overhead of having so many individual documents.
We've done some amount of elasticsearch tuning, but there's probably more than could be done as well.
I would advise you to start with a handful of 64GB machines. You can add more as needed. Toss in a couple of (smaller) client nodes as the front-end for index and search requests.

Performance issues when pushing data at a constant rate to Elasticsearch on multiple indexes at the same time

We are experiencing some performance issues or anomalies on a elasticsearch specifically on a system we are currently building.
The requirements:
We need to capture data for multiple of our customers, who will query and report on them on a near real time basis. All the documents received are the same format with the same properties and are in a flat structure (all fields are of primary type and no nested objects). We want to keep each customer’s information separate from each other.
Frequency of data received and queried:
We receive data for each customer at a fluctuating rate of 200 to 700 documents per second – with the peak being in the middle of the day.
Queries will be mostly aggregations over around 12 million documents per customer – histogram/percentiles to show patterns over time and the occasional raw document retrieval to find out what happened a particular point in time. We are aiming to serve 50 to 100 customer at varying rates of documents inserted – the smallest one could be 20 docs/sec to the largest one peaking at 1000 docs/sec for some minutes.
How are we storing the data:
Each customer has one index per day. For example, if we have 5 customers, there will be a total of 35 indexes for the whole week. The reason we break it per day is because it is mostly the latest two that get queried with occasionally the remaining others. We also do it that way so we can delete older indexes independently of customers (some may want to keep 7 days, some 14 days’ worth of data)
How we are inserting:
We are sending data in batches of 10 to 2000 – every second. One document is around 900bytes raw.
Environment
AWS C3-Large – 3 nodes
All indexes are created with 10 shards with 2 replica for the test purposes
Both Elasticsearch 1.3.2 and 1.4.1
What we have noticed:
If I push data to one index only, Response time starts at 80 to 100ms for each batch inserted when the rate of insert is around 100 documents per second. I ramp it up and I can reach 1600 before the rate of insert goes to close to 1sec per batch and when I increase it to close to 1700, it will hit a wall at some point because of concurrent insertions and the time will spiral to 4 or 5 seconds. Saying that, if I reduce the rate of inserts, Elasticsearch recovers nicely. CPU usage increases as rate increases.
If I push to 2 indexes concurrently, I can reach a total of 1100 and CPU goes up to 93% around 900 documents per second.
If I push to 3 indexes concurrently, I can reach a total of 150 and CPU goes up to 95 to 97%. I tried it many times. The interesting thing is that response time is around 109ms at the time. I can increase the load to 900 and response time will still be around 400 to 600 but CPU stays up.
Question:
Looking at our requirements and findings above, is the design convenient for what’s asked? Are there any tests that I can do to find out more? Is there any setting that I need to check (and change)?
I've been hosting thousands of Elasticsearch clusters on AWS over at https://bonsai.io for the last few years, and have had many a capacity planning conversation that sound like this.
First off, it sounds to me like you have a pretty good cluster design and test rig going here. My first intuition here is that you are legitimately approaching the limits of your c3.large instances, and will want to bump up to a c3.xlarge (or bigger) fairly soon.
An index per tenant per day could be reasonable, if you have relatively few tenants. You may consider an index per day for all tenants, using filters to focus your searches on specific tenants. And unless there are obvious cost savings to discarding old data, then filters should suffice to enforce data retention windows as well.
The primary benefit of segmenting your indices per tenant would be to move your tenants between different Elasticsearch clusters. This could help if you have some tenants with wildly larger usage than others. Or to reduce the potential for Elasticsearch's cluster state management to be a single point of failure for all tenants.
A few other things to keep in mind that may help explain the performance variance you're seeing.
Most importantly here, indexing is incredibly CPU bottlenecked. This makes sense, because Elasticsearch and Lucene are fundamentally just really fancy string parsers, and you're sending piles of strings. (Piles are a legitimate unit of measurement here, right?) Your primary bottleneck is going to be the number and speed of your CPU cores.
In order to take the best advantage of your CPU resources while indexing, you should consider the number of primary shards you're using. I'd recommend starting with three primary shards to distribute the CPU load evenly across the three nodes in your cluster.
For production, you'll almost certainly end up on larger servers. The goal is for your total CPU load for your peak indexing requirements ends up under 50%, so you have some additional overhead for processing your searches. Aggregations are also fairly CPU hungry. The extra performance overhead is also helpful for gracefully handling any other unforeseen circumstances.
You mention pushing to multiple indices concurrently. I would avoid concurrency when bulk updating into Elasticsearch, in favor of batch updating with the Bulk API. You can bulk load documents for multiple indices with the cluster-level /_bulk endpoint. Let Elasticsearch manage the concurrency internally without adding to the overhead of parsing more HTTP connections.
That's just a quick introduction to the subject of performance benchmarking. The Elasticsearch docs have a good article on Hardware which may also help you plan your cluster size.

Resources