I have calculated a graph with cache miss rate(mr) vs the size of cache(sc). How can the CPI (cycle per instructions) be calculated for various cache sizes.
Assumptions are :
Given cache miss latency (say 10 ) ,
base CPI of 1 and
33.33% of instructions as memory operations.
What I understand is that the CPI can be calculated using the following formula. Is the below method correct?
CPI = miss rate*(.3333)*10 + 1
for the MISS RATE: 2.700978
I got the following CPI
CPI: 1.090024
To calculate CPI when given a baseline CPI and statistics about cache hierarchy you can use the following formula:
Effective CPI = Baseline CPI + CPI of memory accesses
Your baseline CPI is 1 (given in the problem statement). So you just need to find the CPI of the memory accesses.
If the memory access is a hit in the cache then we assume that the CPI is the same as the baseline CPI. If it is a miss then it will be the miss latency.
So you have 33% of instructions that are memory accesses. Of those the ones that are misses will take 10 cycles. So putting all of this together you get:
CPI = miss rate*(.3333)*10 + 1
Which is what you have in your question.
As for the code you included and the "Answer" section I don't know what you are asking about there or what its purpose is.
Related
I am trying to solve an exercise question from Computer architecture textbook. The book includes the equation for calculating memory access time (MAT) for up to L2 cache (eq. below), however the exercise has upto L4 cache and off chip memory access for which I don't understand how to use the equation to calculate Avg MAT.
So, Average memory access time = Hit time_L1 + Miss rate_L1 x (Hit time_L2 + Miss rate_L2xMiss penalty_L2)
In exercise question it mentioned a cache hierarchy as -- >[32 KB L1; 128 KB L2; 2 MB L3; 8 MB L4; off-chip memory] for which the memory access time needs to be calculated.
Given, cache/latency/Miss per thousand instructions values: 32 KB/1/100, 128 KB/2/80, 512 KB/4/50, 2 MB/8/40, 8 MB/16/10. And off chip memory access requires 200 cycles on average. Also, 1000 instructions of a program, an average of 20 memory accesses may exhibit low enough locality and can't be serviced bty 2MB cache which has 20 Miss per thousand instruction.
Could anyone help me to solve the problem?
I can calculate penalty when I have a single cache. But I'm unsure what to do when I am presented with two L1 caches (one for data and one for instruction) that are accessed in parallel. I'm also unsure what to do when I'm presented with clock cycles instead of actual time such as ns.
How do I calculate the average miss penalty using these new parameters?
Do I just use the formula two times and then average the miss penalty or is there more to this?
AMAT = hit time + miss rate * miss penalty
For example I have the following values:
AMAT = 4 clock cycles
L1 data access = 2 clock cycle (also hit time)
L1 instruction access = 2 clock cycle (also hit time)
60% of instructions are loads and stores
L1 instruction miss rate = 1%
L1 data miss rate = 3%
How would these values fit into AMAT?
Short answer
The average memory access time (AMAT) is typically calculated by taking the total number of instructions and dividing it by the total number of cycles spent servicing the memory request.
Details
On page B-17 of Computer Architecture a Quantiative Approach, 5th edition AMAT is defined as:
Average memory access time = % instructions x (Hit time + instruction miss rate x miss penalty) + % data x (Hit time + Data miss rate x miss penalty)`.
As you can see in this formula each instruction counts for a single memory access and the instructions that operate on data (load/store) constitute an additional memory access.
Note that there are many simplifying instructions that are made when using AMAT, and depending on the performance analysis that you want to perform. The same textbook I quotes earlier notes that:
In summary, although the state of the art in defining and measuring
memory stalls for out-of-order processors is complex, be aware of the
issues because they significantly affect performance. The complexity
arises because out-of-order processors tolerate some latency due to
cache misses without hurting performance. Consequently, designers
normally use simulators of the out-of-order processor and memory when
evaluating trade-offs in the memory hierarchy to be sure that an
improvement that helps the average memory latency actually helps
program performance.
My point of including this quote is that in practice AMAT is used for getting an approximate comparison between various different option. And as a result there are always simplifying assumptions used. But generally the memory accesses for instructions and data are added together to get a total number of accesses when calculating AMAT, rather than being calculated separately.
The way I see it, since the L1 Instruction Cache and the L1 Data Cache are accessed in parallel, you should compute AMAT for Instructions and AMAT for data, and then take the largest value as the final AMAT.
In your example since the Data Miss Rate is higher than Instruction Miss Rate you can consider that during the time the CPU waits for data, it solves all the misses on the instruction cache.
If the measure unit is cycles you do the same as if it were nanoseconds. If you know the frequency of your processor, you can convert back the AMAT in nanoseconds.
So I'm trying to understand a homework problem given by an instructor and I'm honestly lost - I understand the concept of write-through/write-back, etc. but I can't figure out the actual calculations needed for the effective CPI, could anyone give me a hand? (The problem follows:
The following table provides the statistics of a cache for a
particular program. It is known that the base CPI (without cache
misses) is 1. It is also known that the memory bus bandwidth (the
bandwidth to transfer data between cache and memory) is 4 bytes per
cycle, and it takes one cycle to send the address before data
transfer. The memory spends 10 cycles to store data from bus or fetch
data to bus. The clock rate used by memory and the bus is a quarter of
the CPU clock rate.
Data reads per 1000 instructions: 100
Data writes per 1000 instructions: 150
Instruction cache miss rate: 0.4%
Data cache miss rate: 3%
Block size in bytes: 32
The effective CPI is the base CPU plus the CPI contribution from cache misses.
The cache miss CPI is the sum of the of instruction cache CPI and data cache CPI.
The cache miss cost is the cost of reading or writing to memory, so we will need that.
The cost in bus cycles is 1 (for the address) plus 10 (memory busy time) + 8 (32 byte blocks size divided by 4 bytes/cycle) = 19 cycles. Multiply this by 4 to get CPU cycles. Total is 76 CPU cycles.
So the cost for I cache misses is .004 * 76 = .304 cycles.
The cost for D caches misses is (.10 + .15) * .03 * 76 = .57 cycles
So the effective CPI is 1 + .304 + .57 = 1.874 cycles.
(a) You are given a memory system that has two levels of cache (L1 and L2). Following are the specifications:
Hit time of L1 cache: 2 clock cycles
Hit rate of L1 cache: 92%
Miss penalty to L2 cache (hit time of L2): 8 clock cycles
Hit rate of L2 cache: 86%
Miss penalty to main memory: 37 clock cycles
Assume for the moment that hit rate of main memory is 100%.
Given a 2000 instruction program with 37% data transfer instructions (loads/stores), calculate the CPI (Clock Cycles per Instruction) for this scenario.
For this part, I calculated it like this (am I doing this right?):
(m1: miss rate of L1, m2: miss rate of L2)
AMAT = HitTime_L1 + m1*(HitTime_L2 + m2*MissPenalty_L2)
CPI(actual) = CPI(ideal) + (AMAT - CPI(ideal))*AverageMemoryAccess
(b) Now lets add another level of cache, i.e., L3 cache between the L2 cache and the main memory. Consider the following:
Miss penalty to L3 cache (hit time of L3 cache): 13 clock cycles
Hit rate of L3 cache: 81%
Miss penalty to main memory: 37 clock cycles
Other specifications remain as part (a)
For the same 2000 instruction program (which has 37% data transfer instructions), calculate the CPI.
(m1: miss rate of L1, m2: miss rate of L2, m3: miss rate of L3)
AMAT = HitTime_L1
+ m1*(HitTime_L2 + m2*MissPenalty_L2)
+ m2*(HitTime_L3 + m3*MissPenalty_L3)
Is this formula correct and where do I add the miss penalty to main memory in this formula?
It should probably be added with the miss penalty of L3 but I am not sure.
(a) The AMAT calculation is correct if you notice that the MissPenalty_L2 parameter is what you called Miss penalty to main memory.
The CPI is a bit more difficult.
First of all, let's assume that the CPU is not pipelined (sequential processor).
There are 1.37 memory accesses per instruction (one access to fetch the instruction and 0.37 due to data transfer instructions). The ideal case is that all memory acceses hit in the L1 cache.
So, knowing that:
CPI(ideal) = CPI(computation) + CPI(mem) =
CPI(computation) + Memory_Accesses_per_Instruction*HitTime_L1 =
CPI(computation) + 1.37*HitTime_L1
With real memory, the average memory access time is AMAT, so:
CPI(actual) = CPI(computation) + Memory_Accesses_per_Instruction*AMAT =
CPI(ideal) + Memory_Accesses_per_Instruction*(AMAT - HitTime_L1) =
CPI(ideal) + 1.37*(AMAT - HitTime_L1)
(b) Your AMAT calculation is wrong. After a miss at L2, it follows a L3 access that can be a hit or a miss. Try to finish the exercise yourself.
These are previous homework problems, but I am using them as exam review. I am changing numbers around from what is actually in the problem. I just want to make sure I have a grasp on the concepts. I already have the answers, just need clarification that I understand them. This is not homework but review work.
Anyway, this focuses on aspects of CPI
The fist problem:
An application running on a 1GHz processor has 30% load-store instructions, 30% arithmetic, and 40% branch instructions. The individual CPIs are 3 for load-store, 4 for arithmetic, 5 for branch instructions. Determine the overall CPI of this program on the given processor.
My answer: The overall CPI is the sum of the sub-CPIs, multiplied by the percentages in which they occur i.e. 3*0.3 + 4*0.3 + 5*0.4 = 0.9 + 1.2 + 2 = 4.1
Now, the processor is enhanced to run at 1.6GHz. The CPIs of the branch instructions remain the same but load-store and arithmetic instruction CPIs both increase to 6 cycles. A new compiler is in use which eliminates 30% of branch instructions and 10% of load-stores. Determine the new overall CPI and the factor by which the application will be faster or slower.
My answer: Once again, the new CPI is just the sum of its parts. However, the parts have changed and this must be accounted for. Branch instructions will drop by 30% (0.4*0.7=0.28) and load-stores will drop by 10% (0.3*0.9=0.27); arithmetic instructions will now account for the rest of the instructions (1-0.28-0.27=0.45), or 45%. These will be multiplied by the new sub-CPIs to get: 6*0.45+6*0.27+5*0.28=5.72.
Now, the processor enhancement is 60% faster, and the CPI is greater by (5.72-4.1)/4.1 = 39.5%. Thus, the application will run roughly 0.6*0.395 = 23.7% faster.
Now, the second problem:
A new processor with a load/store architecture has an ideal CPI of 1.25. Typical applications on this processor are a mix of 50% arithmetic and logic, 25% conditional branching and 25% load/store. Memory is accessed via a separate data and instruction cache, with a 5% instruction cache miss rate and 10% data miss rate. The penalty of any cache miss is 100 cycles and hits don't produce any penalties.
What is the effective CPI?
My answer: The effective CPI is the ideal CPI, plus the stalled cycles per instruction due to cache access. The ideal CPI is, as given, 1.25. The stalled cycles per instruction is (0.1*100*0.25) + (0.05*100*1) = 7.5. 0.1*100*0.25 is the data miss rate multiplied by the stalled cycle penalty which is also multiplied by the load/store percentage (which is where the data accesses take place); 0.05*100*1 is the instruction miss rate, which is the instruction cache miss rate times the stalled cycle penalty, instruction access take place in 100% of the program, so this is multiplied by 1. Following from this, the effective CPI is 1.25 + 7.5 = 8.75.
What is the misses per 1000 instruction for typical applications and what is the average memory access time (in clock cycles) for typical applications?
My answers: The misses per 1000 instructions is equal to the stalled cycles per instruction due to cache access (as given above: 7.5), divided by 1000, which equals 7.5/1000 = 0.0075
When discussing the average memory access time (AMAT), we first must talk about the total number of accesses here, which is the percentage of data accesses (25%) plus the percentage of instruction accesses (100%), or 125%=1.25. The data accesses are .25/1.25 and the instruction accesses are 1/1.25.
The AMAT equals the percentage of data accesses (.25/1.25) multiplied by the sum of the hit time (1) and the data miss rate multiplied by the miss penalty (0.1*100), or (.25/1.25)(1+0.1*100) and this is added to the percentage of instruction accesses (1/1.25) multiplied by the sum of the hit time (1) and the instruction miss rate multiplied by the miss penalty (0.05*100), or (1/1.25)(1+0.05*100). Put together, the AMAT is (.25/1.25)(1+0.1*100)+(1/1.25)(1+0.05*100)=7.
Once again, sorry for the wall of text. If I am wrong, please try to help me understand how I am wrong. I tried to show all my work to make it as easy as possible to understand. Thanks in advance.
There's an error in the lat part of your question. When they ask:
What is the misses per 1000 instruction for typical applications and what is the average memory
access time (in clock cycles) for typical applications?
what's needed here is the number of misses you will get for every 1000 instructions, which in this case would be 1000*1*0.05 for instruction cache misses and 1000*0.25*0.1 for data cache misses. This equals 75 misses per 1000 instructions.
To calculate the AMAT, you use the formula AMAT = hit time + (miss rate*miss penalty)
In this case, your miss rate is 75/1000 and your miss penalty is 100 cycles. The hit time is given as 1.25 cycles (your ideal CPI!).
Hope this helps and all the best for your exam!