What does JMS Session single-threadedness mean? - jms

What is the exact nature of the thread-unsafety of a JMS Session and its associated constructs (Message, Consumer, Producer, etc)? Is it just that access to them must be serialized, or is it that access is restricted to the creating thread only?
Or is it a hybrid case where creation can be distinguished from use, i.e. one thread can create them only and then another thread can be the only one to use them? This last possibility would seem to contradict the statement in this answer which says "In fact you must not use it from two different threads at different times either!"
But consider the "Server Side" example code from the ActiveMQ documentation.
The Server class has data members named session (of type Session) and replyProducer (of type MessageProducer) which are
created in one thread: whichever one invokes the Server() constructor and thereby invokes the setupMessageQueueConsumer() method with the actual creation calls; and
used in another thread: whichever one invokes the onMessage() asynchronous callback.
(In fact, the session member is used in both threads too: in one to create the replyProducer member, and in the other to create a message.)
Is this official example code working by accident or by design? Is it really possible to create such objects in one thread and then arrange for another thread to use them?
(Note: in other messaging infrastructures, such as Solace, it's possible to specify the thread on which callbacks occur, which could be exploited to get around this "thread affinity of objects" restriction, but no such API call is defined in JMS, as far as I know.)

JMS specification says a session object should not be used across threads except when calling Session.Close() method. Technically speaking if access to Session object or it's children (producer, consumer etc) is serialized then Session or it's child objects can be accessed across threads. Having said that, since JMS is an API specification, it's implementation differs from vendor to vendor. Some vendors might strictly enforce the thread affinity while some may not. So it's always better to stick to JMS specification and write code accordingly.

The official answer appears to be a footnote to section 4.4. "Session" on p.60 in the JMS 1.1 specification.
There are no restrictions on the number of threads that can use a Session object or those it creates. The restriction is that the resources of a Session should not be used concurrently by multiple threads. It is up to the user to insure that this concurrency restriction is met. The simplest way to do this is to use one thread. In the case of asynchronous delivery, use one thread for setup in stopped mode and then start asynchronous delivery. In more complex cases the user must provide explicit synchronization.
Whether a particular implementation abides by this is another matter, of course. In the case of the ActiveMQ example, the code is conforming because all inbound message handling is through a single asynchronous callback.

Related

Is there a built-in concurrency control in boost::interprocess::message_queue?

In a multiple producer-single consumer setting, is there a built-in concurrency control mechanism among the producer processes that are calling send() on the message_queue?
What happens if there are multiple instances of the consumer processes all calling receive() on the message_queue?
To the question whether message_queue is thread-safe, the answer is yes.
message_queue is implemented in terms of shared_memory_object using some control structures (ipcdetail::mq_hdr_t) which include synchronization primitives (like interprocess_mutex).
These are used to prevent unguarded concurrent access.

Confirm JMS message into subprocess

Is there any way to confirm a JMS message in a subprocess?
I have process A that starts with a JMS Queue Receiver (or JMS Topic Subscriber). It calls process B which has to confirm the message received - I'm using Tibco EMS Explicit acknowledge mode.
This will allow me to reuse some parts. Is it possible to do it?
I'm afraid this is not possible. The confirm always has to be in the same process as the receiver.
In a well-designed architecture you do not want to split the messaging (and confirm) layer but rather push all functional processing into a sub-process having a result parameter indicating if the initial message shall be kept (defer processing to a later time by not confirming) or mark it as "processed" (and confirm it).
By default, all (JMS) messages are auto-confirmed so an explicit confirm is a design choice made by you (based on a particular consumption model) in the config tab of the process starter/step. You should only use this if you know what happens with that message and if a processing deferral is possible. Most loosely coupled messaging is not "transactional" (except you decide to take the extra mile) in a DB sense - so rather stick to the auto-confirm if you have no special handling demand! BW/EMS are quite good in handling (reasonably small) messages so NOT auto-confirming can create re-deliveries within milliseconds and flood your whole system (heap space) if not handled properly.

boost.asio - do i need to use locks if sharing database type object between different async handlers?

I'm making a little server for a project, I have a log handler class which contains a log implemented as a map and some methods to act on it (add entry, flush to disk, commit etc..)
This object is instantiated in the server Class, and I'm passing the address to the session so each session can add entries to it.
The sessions are async, the log writes will happen in the async_read callback. I'm wondering if this will be an issue and if i need to use locks?
The map format is map<transactionId map<sequenceNum, pair<head, body>>, each session will access a different transactionId, so there should be no clashes as far as i can figure. Also hypothetically, if they were all writing to the same place in memory -- something large enough that the operation would not be atomic; would i need locks? As far as I understand each async method dispatches a thread to handle the operation, which would make me assume yes. At the same time I read that one of the great uses of async functions is the fact that synchronization primitives are not needed. So I'm a bit confused.
First time using ASIO or any type of asynchronous functions altogether, and i'm not a very experienced coder. I hope the question makes sense! The code seems to run fine so far, but i'm curios if it's correct.
Thank you!
Asynchronous handlers will only be invoked in application threads processing the io_service event loop via run(), run_one(), poll(), or poll_one(). The documentation states:
Asynchronous completion handlers will only be called from threads that are currently calling io_service::run().
Hence, for a non-thread safe shared resource:
If the application code only has one thread, then there is neither concurrency nor race conditions. Thus, no additional form of synchronization is required. Boost.Asio refers to this as an implicit strand.
If the application code has multiple threads processing the event-loop and the shared resource is only accessed within handlers, then synchronization needs to occur, as multiple threads may attempt to concurrently access the shared resource. To resolve this, one can either:
Protect the calls to the shared resource via a synchronization primitive, such as a mutex. This question covers using mutexes within handlers.
Use the same strand to wrap() the ReadHandlers. A strand will prevent concurrent invocation of handlers dispatched through it. For more details on the usage of strands, particularly for composed operations, such as async_read(), consider reading this answer.
Rather than posting the entire ReadHandler into the strand, one could limit interacting with the shared resource to a specific set of functions, and these functions are posted as CompletionHandlers to the same strand. This subtle difference between this and the previous solution is the granularity of synchronization.
If the application code has multiple threads and the shared resource is accessed from threads processing the event loop and from threads not processing the event loop, then synchronization primitives, such as a mutex, needs to be used.
Also, even if a shared resource is small enough that writes and reads are always atomic, one should prefer using explicit and proper synchronization. For example, although the write and read may be atomic, without proper memory fencing to guarantee memory visibility, a thread may not observe a chance in memory even though the actual memory has chanced. Boost.Asio's will perform the proper memory barriers to guarantee visibility. For more details, on Boost.Asio and memory barriers, consider reading this answer.

Why QueueSession can create only one receiver in JMS?

I can make some senders to send some messages, but when I create two receivers in one Session, the first one works and the second one blocked. In debug, I see the queue list size which the second receiver received is zero. I found that session is made for one thread, I don't know whether this problem involves in the unsafe thread?
I use ActiveMQ implementation.
A JMS Session is absolutely single threaded. As such, it can only have one active receiver. You have 2 options:
Use one connection with multiple sessions, each session having a receiver. Connections are thread safe and you can create many sessions from that single connections.
ActiveMQ gives you a number of options regarding multiplexing multiple destinations, so rather than having multiple receivers, you might want to focus on one, but use ActiveMQ's facilities to create virtual destinations that will funnel all the messages you want through the one receiver.
See this question.

Inter-thread communication (worker threads)

I've created two threads A & B using CreateThread windows API. I'm trying to send the data from thread A to B.
I know I can use Event object and wait for the Event object in another using "WaitForSingleObject" method. What this event does all is just signal the thread. That's it! But how I can send a data. Also I don't want thread B to wait till thread A signals. It has it own job to do. I can't make it wait.
I can't find a Windows function that will allow me to send data to / from the worker thread and main thread referencing the worker thread either by thread ID or by the returned HANDLE. I do not want to introduce the MFC dependency in my project and would like to hear any suggestions as to how others would or have done in this situation. Thanks in advance for any help!
First of all, you should keep in mind that Windows provides a number of mechanisms to deal with threading for you: I/O Completion Ports, old thread pools and new thread pools. Depending on what you're doing any of them might be useful for your purposes.
As to "sending" data from one thread to another, you have a couple of choices. Windows message queues are thread-safe, and a a thread (even if it doesn't have a window) can have a message queue, which you can post messages to using PostThreadMessage.
I've also posted code for a thread-safe queue in another answer.
As far as having the thread continue executing, but take note when a change has happened, the typical method is to have it call WaitForSingleObject with a timeout value of 0, then check the return value -- if it's WAIT_OBJECT_0, the Event (or whatever) has been set, so it needs to take note of the change. If it's WAIT_TIMEOUT, there's been no change, and it can continue executing. Either way, WaitForSingleObject returns immediately.
Since the two threads are in the same process (at least that's what it sounds like), then it is not necessary to "send" data. They can share it (e.g., a simple global variable). You do need to synchronize access to it via either an event, semaphore, mutex, etc.
Depending on what you are doing, it can be very simple.
Thread1Func() {
Set some global data
Signal semaphore to indicate it is available
}
Thread2Func() {
WaitForSingleObject to check/wait if data is available
use the data
}
If you are concerned with minimizing Windows dependencies, and assuming you are coding in C++, then I recommend using Boost.Threads, which is a pretty nice, Posix-like C++ threading interface. This will give you easy portability between Windows and Linux.
If you go this route, then use a mutex to protect any data shared across threads, and a condition variable (combined with the mutex) to signal one thread from the other.
DonĀ“t use a mutexes when only working in one single process, beacuse it has more overhead (since it is a system-wide defined object)... Place a critical section around Your data and try to enter it (as Jerry Coffin did in his code around for the thread safe queue).

Resources