Writing Sleep function based on time.After - time

EDIT: My question is different from How to write my own Sleep function using just time.After? It has a different variant of the code that's not working for a separate reason and I needed explanation as to why.
I'm trying to solve the homework problem here: https://www.golang-book.com/books/intro/10 (Write your own Sleep function using time.After).
Here's my attempt so far based on the examples discussed in that chapter:
package main
import (
"fmt"
"time"
)
func myOwnSleep(duration int) {
for {
select {
case <-time.After(time.Second * time.Duration(duration)):
fmt.Println("slept!")
default:
fmt.Println("Waiting")
}
}
}
func main() {
go myOwnSleep(3)
var input string
fmt.Scanln(&input)
}
http://play.golang.org/p/fb3i9KY3DD
My thought process is that the infinite for will keep executing the select statement's default until the time.After function's returned channel talks. Problem with the current code being, the latter does not happen, while the default statement is called infinitely.
What am I doing wrong?

In each iteration of your for loop the select statement is executed which involves evaluating the channel operands.
In each iteration time.After() will be called and a new channel will be created!
And if duration is more than 0, this channel is not ready to receive from, so the default case will be executed. This channel will not be tested/checked again, the next iteration creates a new channel which will again not be ready to receive from, so the default case is chosen again - as always.
The solution is really simple though as can be seen in this answer:
func Sleep(sec int) {
<-time.After(time.Second* time.Duration(sec))
}
Fixing your variant:
If you want to make your variant work, you have to create one channel only (using time.After()), store the returned channel value, and always check this channel. And if the channel "kicks in" (a value is received from it), you must return from your function because more values will not be received from it and so your loop will remain endless!
func myOwnSleep(duration int) {
ch := time.After(time.Second * time.Duration(duration))
for {
select {
case <-ch:
fmt.Println("slept!")
return // MUST RETURN, else endless loop!
default:
fmt.Println("Waiting")
}
}
}
Note that though until a value is received from the channel, this function will not "rest" and just execute code relentlessly - loading one CPU core. This might even give you trouble if only 1 CPU core is available (runtime.GOMAXPROCS()), other goroutines (including the one that will (or would) send the value on the channel) might get blocked and never executed. A sleep (e.g. time.Sleep(time.Millisecond)) could release the CPU core from doing endless work (and allow other goroutines to run).

Related

How does this go-routine in an anonymous function exactly work?

func (s *server) send(m *message) error {
go func() {
s.outgoingMessageChan <- message
}()
return nil
}
func main(s *server) {
for {
select {
case <-someChannel:
// do something
case msg := <-s.outGoingMessageChan:
// take message sent from "send" and do something
}
}
}
I am pulling out of this s.outgoingMessageChan in another function, before using an anonymous go function, a call to this function would usually block - meaning whenever send is called, s.outgoingMessageChan <- message would block until something is pulling out of it. However after wrapping it like this it doesn't seem to block anymore. I understand that it kind of sends this operation to the background and proceeds as usual, but I'm not able to wrap my head around how this doesn't affect the current function call.
Each time send is called a new goroutine is created, and returns immediately. (BTW there is no reason to return an error if there can never be an error.) The goroutine (which has it's own "thread" of execution) will block if nothing is ready to read from the chan (assuming it's unbuffered). Once the message is read off the chan the goroutine will continue but since it does nothing else it will simply end.
I should point out that there is no such thing as an anonymous goroutine. Goroutines have no identifier at all (except for a number that you should only use for debugging purposes). You have an anonymous function which you put the go keyword in front causing it to run in a separate goroutine.
For a send function that blocks as you seem to want then just use:
func (s *server) send(m *message) {
s.outgoingMessageChan <- message
}
However, I can't see any point in this function (though it would be inlined and just as efficient as not using a function).
I suspect you may be calling send many times before anything is read from the chan. In this case many new goroutines will be created (each time you call send) which will all block. Each time the chan is read from one will unblock delivering its value and that goroutine will terminate. Doing this you are simply creating an inefficient buffering mechanism. Moreover, if send is called for a prolonged period at a faster rate than the values can be read from the chan then you will eventually run out of memory. Better would be to use a buffered chan (and no goroutines) that once it (the chan) became full exerted "back-pressure" on whatever was producing the messages.
Another point is that the function name main is used to identify the entry point to a program. Please use another name for your 2nd function above. It also seems like it should be a method (using s *server receiver) than a function.

Computing mod inverse

I want to compute the inverse element of a prime in modular arithmetic.
In order to speed things up I start a few goroutines which try to find the element in a certain range. When the first one finds the element, it sends it to the main goroutine and at this point I want to terminate the program. So I call close in the main goroutine, but I don't know if the goroutines will finish their execution (I guess not). So a few questions arise:
1) Is this a bad style, should I have something like a WaitGroup?
2) Is there a more idiomatic way to do this computation?
package main
import "fmt"
const (
Procs = 8
P = 1000099
Base = 1<<31 - 1
)
func compute(start, end uint64, finished chan struct{}, output chan uint64) {
for i := start; i < end; i++ {
select {
case <-finished:
return
default:
break
}
if i*P%Base == 1 {
output <- i
}
}
}
func main() {
finished := make(chan struct{})
output := make(chan uint64)
for i := uint64(0); i < Procs; i++ {
start := i * (Base / Procs)
end := (i + 1) * (Base / Procs)
go compute(start, end, finished, output)
}
fmt.Println(<-output)
close(finished)
}
Is there a more idiomatic way to do this computation?
You don't actually need a loop to compute this.
If you use the GCD function (part of the standard library), you get returned numbers x and y such that:
x*P+y*Base=1
this means that x is the answer you want (because x*P = 1 modulo Base):
package main
import (
"fmt"
"math/big"
)
const (
P = 1000099
Base = 1<<31 - 1
)
func main() {
bigP := big.NewInt(P)
bigBase := big.NewInt(Base)
// Compute inverse of bigP modulo bigBase
bigGcd := big.NewInt(0)
bigX := big.NewInt(0)
bigGcd.GCD(bigX,nil,bigP,bigBase)
// x*bigP+y*bigBase=1
// => x*bigP = 1 modulo bigBase
fmt.Println(bigX)
}
Is this a bad style, should I have something like a WaitGroup?
A wait group solves a different problem.
In general, to be a responsible go citizen here and ensure your code runs and tidies up behind itself, you may need to do a combination of:
Signal to the spawned goroutines to stop their calculations when the result of the computation has been found elsewhere.
Ensure a synchronous process waits for the goroutines to stop before returning. This is not mandatory if they properly respond to the signal in #1, but if you don't wait, there will be no guarantee they have terminated before the parent goroutine continues.
In your example program, which performs this task and then quits, there is strictly no need to do either. As this comment indicates, your program's main method terminates upon a satisfactory answer being found, at which point the program will end, any goroutines will be summarily terminated, and the operating system will tidy up any consumed resources. Waiting for goroutines to stop is unnecessary.
However, if you wrapped this code up into a library or it became part of a long running "inverse prime calculation" service, it would be desirable to tidy up the goroutines you spawned to avoid wasting cycles unnecessarily. Additionally, in general, you may have other scenarios in which goroutines store state, hold handles to external resources, or hold handles to internal objects which you risk leaking if not properly tidied away – it is desirable to properly close these.
Communicating the requirement to stop working
There are several approaches to communicate this. I don't claim this is an exhaustive list! (Please do suggest other general-purpose methods in the comments or by proposing edits to the post.)
Using a special channel
Signal the child goroutines by closing a special "shutdown" channel reserved for the purpose. This exploits the channel axiom:
A receive from a closed channel returns the zero value immediately
On receiving from the shutdown channel, the goroutine should immediately arrange to tidy any local state and return from the function. Your earlier question had example code which implemented this; a version of the pattern is:
func myGoRoutine(shutdownChan <-chan struct{}) {
select {
case <-shutdownChan:
// tidy up behaviour goes here
return
// You may choose to listen on other channels here to implement
// the primary behaviour of the goroutine.
}
}
func main() {
shutdownChan := make(chan struct{})
go myGoRoutine(shutdownChan)
// some time later
close(shutdownChan)
}
In this instance, the shutdown logic is wasted because the main() method will immediately return after the call to close. This will race with the shutdown of the goroutine, but we should assume it will not properly execute its tidy-up behaviour. Point 2 addresses ways to fix this.
Using a context
The context package provides the option to create a context which can be cancelled. On cancellation, a channel exposed by the context's Done() method will be closed, which signals time to return from the goroutine.
This approach is approximately the same as the previous method, with the exception of neater encapsulation and the availability of a context to pass to downstream calls in your goroutine to cancel nested calls where desired. Example:
func myGoRoutine(ctx context.Context) {
select {
case <-ctx.Done():
// tidy up behaviour goes here
return
// Put real behaviour for the goroutine here.
}
}
func main() {
// Get a context (or use an existing one if you are provided with one
// outside a `main` method:
ctx := context.Background()
// Create a derived context with a cancellation method
ctx, cancel := context.WithCancel(ctx)
go myGoRoutine(ctx)
// Later, when ready to quit
cancel()
}
This has the same bug as the other case in that the main method will not wait for the child goroutines to quit before returning.
Waiting (or "join"ing) for child goroutines to stop
The code which closes the shutdown channel or closes the context in the above examples will not wait for child goroutines to stop working before continuing. This may be acceptable in some instances, while in others you may require the guarantee that goroutines have stopped before continuing.
sync.WaitGroup can be used to implement this requirement. The documentation is comprehensive. A wait group is a counter which should be incremented using its Add method on starting a goroutine and decremented using its Done method when a goroutine completes. Code can wait for the counter to return to zero by calling its Wait method, which blocks until the condition is true. All calls to Add must occur before a call to Wait.
Example code:
func main() {
var wg sync.WaitGroup
// Increment the WaitGroup with the number of goroutines we're
// spawning.
wg.Add(1)
// It is common to wrap a goroutine in a function which performs
// the decrement on the WaitGroup once the called function returns
// to avoid passing references of this control logic to the
// downstream consumer.
go func() {
// TODO: implement a method to communicate shutdown.
callMyFunction()
wg.Done()
}()
// Indicate shutdown, e.g. by closing a channel or cancelling a
// context.
// Wait for goroutines to stop
wg.Wait()
}
Is there a more idiomatic way to do this computation?
This algorithm is certainly parallelizable through use of goroutines in the manner you have defined. As the work is CPU-bound, the limitation of goroutines to the number of available CPUs makes sense (in the absence of other work on the machine) to benefit from the available compute resource.
See peterSO's answer for a bug fix.

Goroutine only works when fmt.Println is executed

For some reason, when I remove the fmt.Printlns then the code is blocking.
I've got no idea why it happens. All I want to do is to implement a simple concurrency limiter...
I've never experienced such a weird thing. It's like that fmt flushes the variables or something and makes it work.
Also, when I use a regular function instead of a goroutine then it works too.
Here's the following code -
package main
import "fmt"
type ConcurrencyLimit struct {
active int
Limit int
}
func (c *ConcurrencyLimit) Block() {
for {
fmt.Println(c.active, c.Limit)
// If should block
if c.active == c.Limit {
continue
}
c.active++
break
}
}
func (c *ConcurrencyLimit) Decrease() int {
fmt.Println("decrease")
if c.active > 0 {
c.active--
}
return c.active
}
func main() {
c := ConcurrencyLimit{Limit: 1}
c.Block()
go func() {
c.Decrease()
}()
c.Block()
}
Clarification: Even though I've accepted #kaedys 's answer(here) a solution was answered by #Kaveh Shahbazian (here)
You're not giving c.Decrease() a chance to run. c.Block() runs an infinite for loop, but it never blocks in that for loop, just calling continue over and over on every iteration. The main thread spins at 100% usage endlessly.
However, when you add an fmt.Print() call, that makes a syscall, which allows the other goroutine to run.
This post has details on how exactly goroutines yield or are pre-empted. Note, however, that it's slightly out of date, as entering a function now has a random chance to yield that thread to another goroutine, to prevent similar style flooding of threads.
As others have pointed out, Block() will never yield; a goroutine is not a thread. You could use Gosched() in the runtime package to force a yield -- but note that spinning this way in Block() is a pretty terrible idea.
There are much better ways to do concurrency limiting. See http://jmoiron.net/blog/limiting-concurrency-in-go/ for one example
What you are looking for is called a semaphore. You can apply this pattern using channels
http://www.golangpatterns.info/concurrency/semaphores
The idea is that you create a buffered channel of a desired length. Then you make callers acquire the resource by putting a value into the channel and reading it back out when they want to free the resource. Doing so creates proper synchronization points in your program so that the Go scheduler runs correctly.
What you are doing now is spinning the cpu and blocking the Go scheduler. It depends on how many cpus you have available, the version of Go, and the value of GOMAXPROCS. Given the right combination, there may not be another available thread to service other goroutines while you infinitely spin that particular thread.
While other answers pretty much covered the reason (not giving a chance for the goroutine to run) - and I'm not sure what you intend to achieve here - you are mutating a value concurrently without proper synchronization. A rewrite of above code with synchronization considered; would be:
type ConcurrencyLimit struct {
active int
Limit int
cond *sync.Cond
}
func (c *ConcurrencyLimit) Block() {
c.cond.L.Lock()
for c.active == c.Limit {
c.cond.Wait()
}
c.active++
c.cond.L.Unlock()
c.cond.Signal()
}
func (c *ConcurrencyLimit) Decrease() int {
defer c.cond.Signal()
c.cond.L.Lock()
defer c.cond.L.Unlock()
fmt.Println("decrease")
if c.active > 0 {
c.active--
}
return c.active
}
func main() {
c := ConcurrencyLimit{
Limit: 1,
cond: &sync.Cond{L: &sync.Mutex{}},
}
c.Block()
go func() {
c.Decrease()
}()
c.Block()
fmt.Println(c.active, c.Limit)
}
sync.Cond is a synchronization utility designed for times that you want to check if a condition is met, concurrently; while other workers are mutating the data of the condition.
The Lock and Unlock functions work as we expect from a lock. When we are done with checking or mutating, we can call Signal to awake one goroutine (or call Broadcast to awake more than one), so the goroutine knows that is free to act upon the data (or check a condition).
The only part that may seem unusual is the Wait function. It is actually very simple. It is like calling Unlock and instantly call Lock again - with the exception that Wait would not try to lock again, unless triggered by Signal (or Broadcast) in other goroutines; like the workers that are mutating the data (of the condition).

More idiomatic way of adding channel result to queue on completion

So, right now, I just pass a pointer to a Queue object (implementation doesn't really matter) and call queue.add(result) at the end of goroutines that should add things to the queue.
I need that same sort of functionality—and of course doing a loop checking completion with the comma ok syntax is unacceptable in terms of performance versus the simple queue add function call.
Is there a way to do this better, or not?
There are actually two parts to your question: how does one queue data in Go, and how does one use a channel without blocking.
For the first part, it sounds like what you need to do is instead of using the channel to add things to the queue, use the channel as a queue. For example:
var (
ch = make(chan int) // You can add an int parameter to this make call to create a buffered channel
// Do not buffer these channels!
gFinished = make(chan bool)
processFinished = make(chan bool)
)
func f() {
go g()
for {
// send values over ch here...
}
<-gFinished
close(ch)
}
func g() {
// create more expensive objects...
gFinished <- true
}
func processObjects() {
for val := range ch {
// Process each val here
}
processFinished <- true
}
func main() {
go processObjects()
f()
<-processFinished
}
As for how you can make this more asynchronous, you can (as cthom06 pointed out) pass a second integer to the make call in the second line which will make send operations asynchronous until the channel's buffer is full.
EDIT: However (as cthom06 also pointed out), because you have two goroutines writing to the channel, one of them has to be responsible for closing the channel. Also, my previous revision would exit before processObjects could complete. The way I chose to synchronize the goroutines is by creating a couple more channels that pass around dummy values to ensure that the cleanup gets finished properly. Those channels are specifically unbuffered so that the sends happen in lock-step.

How do I find out if a goroutine is done, without blocking?

All the examples I've seen so far involve blocking to get the result (via the <-chan operator).
My current approach involves passing a pointer to a struct:
type goresult struct {
result resultType;
finished bool;
}
which the goroutine writes upon completion. Then it's a simple matter of checking finished whenever convenient. Do you have better alternatives?
What I'm really aiming for is a Qt-style signal-slot system. I have a hunch the solution will look almost trivial (chans have lots of unexplored potential), but I'm not yet familiar enough with the language to figure it out.
You can use the "comma, ok" pattern (see their page on "effective go"):
foo := <- ch; // This blocks.
foo, ok := <- ch; // This returns immediately.
Select statements allows you to check multiple channels at once, taking a random branch (of the ones where communication is waiting):
func main () {
for {
select {
case w := <- workchan:
go do_work(w)
case <- signalchan:
return
// default works here if no communication is available
default:
// do idle work
}
}
}
For all the send and receive
expressions in the "select" statement,
the channel expressions are evaluated,
along with any expressions that appear
on the right hand side of send
expressions, in top-to-bottom order.
If any of the resulting operations can
proceed, one is chosen and the
corresponding communication and
statements are evaluated. Otherwise,
if there is a default case, that
executes; if not, the statement blocks
until one of the communications can
complete.
You can also peek at the channel buffer to see if it contains anything by using len:
if len(channel) > 0 {
// has data to receive
}
This won't touch the channel buffer, unlike foo, gotValue := <- ch which removes a value when gotValue == true.

Resources